Pagini recente » Diferente pentru blog/probleme-de-formula intre reviziile 33 si 34 | Monitorul de evaluare | Infoarena are o conducere nouă | Diferente pentru blog/imaginecup intre reviziile 2 si 3 | Diferente pentru blog/probleme-de-formula intre reviziile 41 si 37
Nu exista diferente intre titluri.
Diferente intre continut:
Radu s-a gandit ca solutia va fi un polinom in doua variabile $P(n, k)$, iar gradul polinomului nu va fi prea mare (parca el a presupus ca limita e 6). Astfel a generat folosind metoda backtracking solutiile pentru $n <= 6$ si $k <= 6$. A considerat coeficientii polinomului ca necunoscute si a rezolvat sistemul de ecuatii liniare date $P(n, k)$ si valorile obtinute prin algoritmul backtracking. Astfel luat punctaj maxim pe problema respectiva.
Problema patrat(lot 2005), cerea _determinarea numarului de patrate magice de dimensiune 3x3 unde suma elementelor de pe linii, coloane si diagonale este $N$_. Solutia este un polinomul de gradul 4. Fie el $P(X) = aX^4^ + bX^3^ + cX^2^ + dX + e$. Numim $V{~1~}, V{~2~}, V{~3~}, V{~4~} si V{~5~}$ numarul de solutii pentru $N = 1, ..., 5$. Acum sistemul de care vorbeam mai sus va arata asa:
Problema patrat(lot 2005), cerea _determinarea numarului de patrate magice de dimensiune 3x3 unde suma elementelor de pe linii, coloane si diagonale este $N$_. Solutia este un polinomul de gradul 4. Fie el $P(X) = aX^4^ + bX^3^ + cX^2^ + dX + e$. Numim V{~1~}, V{~2~}, V{~3~}, V{~4~} si V{~5~} numarul de solutii pentru N = 1, ..., 6. Acum sistemul de care vorbeam mai sus va arata asa:
$a + b + c + d + e = V{~1~}$
$16a + 8b + 4c + 2d + e = V{~2~}$
Daca formula e ceva mai complicata decat un polinom, putem sa speram ca sirul solutiilor e caracterizat de o recurenta liniara, si astfel putem folosi din nou rezolvarea de sisteme de ecuatii lineare pentru a afla coeficientii recurentei.
Sper ca am aratat ca propunerea unei *probleme de formula* este o idee *foarte proasta*! Si chiar daca va confruntati cu una veti putea sa o rezolvati rapid folosind micile trucuri expuse mai sus. Chiar daca si eu am propus o problema de formula, sper ca ele vor disparea din concursurile importante gen ONI, baraje si LOT.
Sper ca am aratat ca propunerea unei *probleme de formula* este o idee *foarte proasta*! Si chiar daca va confruntati cu una veti putea sa o rezolvati rapid folosind micile trucuri expuse mai sus.
In rest Paste Fericit si Bafta la ONI!
Diferente intre securitate:
Diferente intre topic forum: