Diferente pentru blog/probleme-de-formula intre reviziile #38 si #37

Nu exista diferente intre titluri.

Diferente intre continut:

Radu s-a gandit ca solutia va fi un polinom in doua variabile $P(n, k)$, iar gradul polinomului nu va fi prea mare (parca el a presupus ca limita e 6). Astfel a generat folosind metoda backtracking solutiile pentru $n <= 6$ si $k <= 6$. A considerat coeficientii polinomului ca necunoscute si a rezolvat sistemul de ecuatii liniare date $P(n, k)$ si valorile obtinute prin algoritmul backtracking. Astfel luat punctaj maxim pe problema respectiva.
Problema patrat(lot 2005), cerea _determinarea numarului de patrate magice de dimensiune 3x3 unde suma elementelor de pe linii, coloane si diagonale este $N$_. Solutia este un polinomul de gradul 4. Fie el $P(X) = aX^4^ + bX^3^ + cX^2^ + dX + e$. Numim $V{~1~}, V{~2~}, V{~3~}, V{~4~} si V{~5~}$ numarul de solutii pentru $N = 1, ..., 5$. Acum sistemul de care vorbeam mai sus va arata asa:
Problema patrat(lot 2005), cerea _determinarea numarului de patrate magice de dimensiune 3x3 unde suma elementelor de pe linii, coloane si diagonale este $N$_. Solutia este un polinomul de gradul 4. Fie el $P(X) = aX^4^ + bX^3^ + cX^2^ + dX + e$. Numim V{~1~}, V{~2~}, V{~3~}, V{~4~} si V{~5~} numarul de solutii pentru N = 1, ..., 6. Acum sistemul de care vorbeam mai sus va arata asa:
$a + b + c + d + e = V{~1~}$
$16a + 8b + 4c + 2d + e = V{~2~}$

Nu exista diferente intre securitate.

Topicul de forum nu a fost schimbat.