Diferente pentru tree-decompositions intre reviziile #82 si #83

Nu exista diferente intre titluri.

Diferente intre continut:

    returneaza ret
==
Functia $QUERYAi(Path[], lo, hi)$ returneaza in $O(log(N))$, cu ajutorul structurii de date arbori de intervale, maximul dintre valorile cuprinse in intervalul $[lo, hi]$. Raspunsul cerintei de primul tip va fi  {$Maxim(QUERY (lca, x), QUERY (lca, y))$}, variabila <tex> lca </tex> fiind cel mai apropiat stramos comun al lui <tex> x </tex> si <tex> y </tex>. Pentru rezolvarea cerintei de tipul doi, vom folosi aceiasi arbori de intervale care vor avea un cost de $O(log(N))$ pe operatie. Nu voi prezenta aceasta functie, ea fiind in detaliu prezentata in una din sursele afisate in 'bibliografie':tree-decompositions#bibliografie.
Functia $QUERYAi(Path[], lo, hi)$ returneaza in $O(log(N))$, cu ajutorul structurii de date $arbori de intervale$, maximul dintre valorile cuprinse in intervalul $[lo, hi]$. Raspunsul cerintei de primul tip va fi {$Maxim(QUERY(lca, x), QUERY(lca, y))$}, variabila <tex> lca </tex> fiind cel mai apropiat stramos comun al lui <tex> x </tex> si <tex> y </tex>. Pentru rezolvarea cerintei de tipul doi, vom folosi aceiasi arbori de intervale care vor avea un cost de $O(log(N))$ pe operatie. Nu voi prezenta aceasta functie, ea fiind in detaliu prezentata in una din sursele afisate in 'bibliografie':tree-decompositions#bibliografie.
Complexitatea finala: $O(M*sqrt(N)*log(N))$. Cel mai rau caz pentru un query este cand se trece prin toate lanturile (in numar de $sqrt(N)$) efectuandu-se cate un query pe fiecare arbore de intervale asociat ({$O(log(N))$}).
Complexitatea finala: $O(M*log(N)*sqrt(N))$. Cel mai rau caz pentru un query este cand se trece prin toate lanturile (in numar de $sqrt(N)$) efectuandu-se cate un query pe fiecare arbore de intervale asociat ({$O(log(N))$}).
h3(#solutie-log-log). Solutie $O(M*log^2^(N))$

Nu exista diferente intre securitate.

Topicul de forum nu a fost schimbat.