Diferente pentru tree-decompositions intre reviziile #80 si #81

Nu exista diferente intre titluri.

Diferente intre continut:

Fie <tex> G = (V, E) </tex> un graf neorientat conex, <tex> |E| = |V| - 1 </tex> (tot un arbore). Vom considera, bineinteles, ca fiecare nod <tex> x \in V </tex> are asociata o valoare <tex> value[x] </tex> din multimea numerelor reale. Se dau $M$ instructiuni, $M &le; 200000$, de doua tipuri:
* primul tip de instructiuni cere sa se scrie maximul dintre valorile nodurilor ce se afla pe lantul dintre <tex> x, y \in V </tex> (daca <tex> P = (x_{0}, x_{1}, x_{2}, ..., x_{n}), x_{0} = x, x_{n} = y </tex>,  atunci se cere <tex> \Delta = \max \{value[u]\ /\ u \in P \} </tex>)
* primul tip de instructiuni cere sa se scrie maximul dintre valorile nodurilor ce se afla pe lantul dintre <tex> x, y \in V </tex> (daca <tex> P = (x_{0}, x_{1}, x_{2}, ..., x_{n}) </tex>, <tex> x_{0} = x </tex>, <tex> x_{n} = y </tex>,  atunci se cere <tex> \Delta = \max \{value[u]\ /\ u \in P \} </tex>)
* al doilea tip modifica valoarea asociata unui nod.
h3(#solutie-brute). Solutie $O(M*N)$

Nu exista diferente intre securitate.

Topicul de forum nu a fost schimbat.