Fişierul intrare/ieşire:mmo.in, mmo.outSursăAlgoritmiada 2013, Runda Finala
AutorVlad IonescuAdăugată deklamathixMihai Calancea klamathix
Timp execuţie pe test0.5 secLimită de memorie12288 kbytes
Scorul tăuN/ADificultatenormalnormalnormalnormalnormal

Vezi solutiile trimise | Statistici

Mai Marii Orasului

Mai Marii Oraşului, personaje recurente în istoria finalelor Algoritmiada, revin în atenţia publică. Aceştia, simţindu-se ameninţati de către tradiţionalul partid de opoziţie "Mai Marii Comisiei", plănuiesc să efectueze o plimbare prin Oraş pentru a atrage capital electoral.

Oraşul este format din N intersecţii şi M străzi bidirecţionale care leagă aceste intersecţii. Fiecare stradă este asociată cu un spor de popularitate pozitiv. Mai Marii Oraşului pot începe plimbarea în orice intersecţie şi pot parcurge fiecare stradă de oricâte ori doresc, însă aceasta trebuie sa se încheie în intersecţia de start. Din păcate, datorită corupţiei înfloritoare din perioada ultimului mandat al Mai Marilor Comisiei, străzile Oraşului se află într-o stare îndoielnică. Atât de îndoielnică încât străzile folosite frecvent se pot deteriora chiar in timpul plimbării, acest lucru având un efect negativ asupra coeficientului de popularitate asociat cu strada respectivă. Mai exact, la prima parcurgere a unei străzi având coeficientul egal cu X, popularitatea Mai Marilor Oraşului va creşte cu X. Pentru parcurgeri ulterioare, popularitatea va creşte cu (-X, -2X, -4X, -8X..) Cunoscând acest lucru, Mai Marii Oraşului vor încerca să maximizeze sporul total de popularitate planificându-şi inteligent plimbarea.

Voi, bineînţeles, fiind băieţi cu pile, lucraţi în stafful de campanie al Mai Marilor Comisiei. Aflaţi şi voi sporul maxim de popularitate pe care îl pot obţine Mai Marii Oraşului în cadrul plimbării, pentru ca apoi Comisia să estimeze cu uşurinţă câte voturi vor trebui falsificate la alegerile viitoare.

Date de intrare

Fişierul de intrare mmo.in va conţine pe prima sa linie valorile N şi M, reprezentând numărul de intersecţii ale oraşului, respectiv numărul de străzi ale acestuia. Următoarele M linii vor conţine trei numere întregi pozitive x y c, semnificând existenţa unei străzi bidirecţionale care leagă intersecţiile x şi y cu coeficientul de popularitate asociat egal cu c.

Date de ieşire

În fişierul de ieşire mmo.out se va afla valoarea cerută.

Restricţii

  • 1 ≤ N ≤ 18
  • 1 ≤ x, y ≤ N
  • 1 ≤ M ≤ N * (N - 1) / 2
  • 1 ≤ c ≤ 105
  • Există maxim o stradă care leagă două intersecţii. De-asemenea, nu există străzi cu capetele în aceeaşi intersecţie.
  • Se garantează ca orice oraş este accesibil din orice alt oraş prin intermediul străzilor existente.

Exemplu

mmo.inmmo.out
2 1
1 2 3
0

Explicaţie

Plimbarea începe în oraşul 1, trece prin 2 şi revine în oraşul 1.

Trebuie sa te autentifici pentru a trimite solutii. Click aici

Cum se trimit solutii?