Fişierul intrare/ieşire:leduri.in, leduri.outSursăONI 2016, clasa a 9-a
AutorLucian Bicsi, Pit-Rada VasileAdăugată deAlexandruValeanuAlexandru Valeanu AlexandruValeanu
Timp execuţie pe test0.2 secLimită de memorie20480 kbytes
Scorul tăuN/ADificultateN/A

Vezi solutiile trimise | Statistici

Leduri

Am un cablu cu N leduri (numerotate de la 1 la N) aşezate echidistant. Iniţial, unele leduri sunt aprinse, iar altele sunt stinse. Ledurile sunt legate între ele astfel încât atingerea fiecărui led produce modificarea atât a stării lui, cât şi a ledurilor vecine lui. Deci, dacă se atinge ledul i (2 ≤ i ≤ N-1) atunci se modifică stările ledurilor i-1, i şi i+1. Dacă se atinge ledul 1, atunci se modifică stările ledurilor 1 şi 2, iar dacă se atinge ledul N, atunci se modifică stările ledurilor N-1 şi N. Vreau să modific starea ledurilor astfel încât să semene cu cablul cu N leduri pe care îl are Ionuţ, prietenul meu (două cabluri seamănă dacă pentru orice i=1..N stările ledurilor de pe poziţia i sunt identice).

Cerinţă

Cunoscând cum arată cablul lui Ionuţ, ajutaţi-mă să determin numărul minim de atingeri ale unor leduri astfel încât cablul meu să arate ca şi cablul lui Ionuţ.

Date de intrare

Fişierul de intrare leduri.in conţine pe prima linie numărul natural N.
Pe a doua linie sunt N cifre binare separate prin câte un spaţiu reprezentând stările ledurilor de pe cablul meu. Cifra de pe poziţia i este 0 dacă ledul i este stins, respectiv este 1 dacă ledul i este aprins (i=1..N).
Pe a treia linie sunt N cifre binare separate prin câte un spaţiu, reprezentând stările ledurilor de pe cablul lui Ionuţ.

Date de ieşire

Fişierul de ieşire leduri.out va conţine pe prima linie un singur număr natural reprezentând numărul minim de atingeri ale unor leduri astfel încât cablul meu să arate ca şi cablul lui Ionuţ.

Restricţii

  • 1 ≤ N ≤ 100.000
  • Se garantează că pentru toate testele există soluţie.
  • Pentru teste valorând 30 de puncte, N va fi cel mult 20

Exemplu

leduri.inleduri.outExplicaţie
4
1 0 1 0
0 1 1 1
2
O soluţie posibilă este:
Se apasă mai întâi al doilea led: 1 0 1 0 → 0 1 0 0
Se apasă ultimul led: 0 1 0 0 → 0 1 1 1
Trebuie sa te autentifici pentru a trimite solutii. Click aici

Cum se trimit solutii?