Diferente pentru problema/lca intre reviziile #38 si #39

Nu exista diferente intre titluri.

Diferente intre continut:

O altă soluţie relativ uşor şi rapid de implementat în condiţii de concurs este cea care foloseşte ideea de la problema 'Strămoşi':problema/stramosi. Se reţine pentru fiecare nod strămoşul cu <tex>2^{k}</tex> nivele mai sus, unde $k$ ia valori între <tex>1</tex> şi <tex>log_{2}N</tex>. Astfel, pentru fiecare query, se aduce nodul de pe nivelul mai mare pe acelaşi nivel cu celălalt în timp logaritmic, după care, tot în timp logaritmic, se poate afla $LCA$-ul celor două noduri. Complexitatea finală este deci <tex>O(Nlog_{2}N + Mlog_{2}N)</tex>. Această 'soluţie':job_detail/369283?action=view-source ar trebui să obţină $70$ puncte.
O 'soluţie':job_detail/368822?action=view-source ce se foloseşte de 'algoritmul lui Tarjan':http://en.wikipedia.org/wiki/Tarjan%27s_off-line_least_common_ancestors_algorithm care rezolvă query-urile offline, bazându-se pe structura de date 'mulţimi disjuncte':problema/disjoint. Aceasta are complexitatea de <tex>O(Nlog*N + M)</tex> şi ar trebui să obţină $70$ de puncte din cauza numărului mare de query-uri. Asemenea metodei cu RMQ prezentată mai jos, şi această metodă foloseşte o cantitate mai mare de memorie, <tex>O(M)</tex> care în anumite condiţii nu se încadrează limitei de memorie. Un alt dezavantaj în anumite cazuri este faptul că query-urile nu se parcurg în ordine, ci se rezolvă offline, adică este necesară cunoaşterea lor în prealabil.
O 'soluţie':job_detail/369478?action=view-source ce se foloseşte de 'algoritmul lui Tarjan':http://en.wikipedia.org/wiki/Tarjan%27s_off-line_least_common_ancestors_algorithm care rezolvă query-urile offline, bazându-se pe structura de date 'mulţimi disjuncte':problema/disjoint. Aceasta are complexitatea de <tex>O(Nlog*N + M)</tex> şi ar trebui să obţină $70$ de puncte din cauza numărului mare de query-uri. Asemenea metodei cu RMQ prezentată mai jos, şi această metodă foloseşte o cantitate mai mare de memorie, <tex>O(M)</tex> care în anumite condiţii nu se încadrează limitei de memorie. Un alt dezavantaj în anumite cazuri este faptul că query-urile nu se parcurg în ordine, ci se rezolvă offline, adică este necesară cunoaşterea lor în prealabil.
Soluţia care ar trebui să obţină $100$ de puncte se bazează pe următoarea observaţie: „Cel mai apropiat strămoş comun a $2$ noduri este nodul de nivel minim dintre primele apariţii ale nodurilor din query din 'reprezentarea Euler a arborelui':lowest-common-ancestor.” În cazul de faţă, reprezentarea Euler a arborelui este următoarea, pe următorul rând găsindu-se nivelurile nodurilor:

Nu exista diferente intre securitate.

Topicul de forum nu a fost schimbat.