Pagini recente » Atasamentele paginii Profil Pikachu | Diferente pentru problema/sec intre reviziile 20 si 2 | Diferente pentru utilizator/todetode intre reviziile 25 si 23 | Diferente pentru problema/smin intre reviziile 7 si 4 | Diferente pentru problema/cmmmc intre reviziile 4 si 5
Diferente pentru
problema/cmmmc intre reviziile
#4 si
#5
Nu exista diferente intre titluri.
Diferente intre continut:
== include(page="template/taskheader" task_id="cmmmc") ==
Definim noţiunea de pereche ordonată, perechea de numere naturale $(x, y)$ cu $x ≤ y$. Definim cel mai mic multiplu comun al unei perechi ordonate ca fiind cel mai mic multiplu comun al numerelor care formează perechea.
Se dau $k$ numere naturale $n{~1~}, n{~2~}, ..., n{~k~}$.
h2. Cerinţă
h2. Restricţii şi precizări
* $1 ≤ k ≤ 100$
* $1 ≤ n{~i~} ≤ 2 000 000 000$
* $1 ≤ k ≤ 100$.
* $1 ≤ n{~i~} ≤ 2 000 000 000$.
* Pentru $20%$ dintre teste, $k ≤ 100$ şi $n{~i~} ≤ 1000$.
* Fiecare dintre cele k linii ale fişierului cmmmc.out trebuie să conţină exact trei numere separate prin câte un spaţiu; în caz contrar, soluţia se consideră greşită şi se obţin 0 puncte pentru testul respectiv. Rezolvarea corectă a cerinţei a) valorează $40%$ din punctajul unui test iar rezolvarea corectă a cerinţei b) $60%$.
* Fiecare dintre cele $k$ linii ale fişierului $cmmmc.out$ trebuie să conţină exact trei numere separate prin câte un spaţiu; în caz contrar, soluţia se consideră greşită şi se obţin $0$ puncte pentru testul respectiv. Rezolvarea corectă a cerinţei a) valorează $40%$ din punctajul unui test iar rezolvarea corectă a cerinţei b) $60%$.
h2. Exemplu
Există cinci perechi distincte care au cel mai mic multiplu comun egal cu $10$: $(1, 10)$, $(2, 10)$, $(5, 10)$, $(2, 5)$ si $(10, 10)$. Dintre acestea perechea cu cea mai mică sumă este $(2, 5)$.
Pentru $n = 11$ există două perechi ordonate care au cel mai mic multiplu comun $11$: $(1, 11)$, $(11, 11)$. Dintre acestea perechea cu cea mai mică sumă este $(1, 11)$.
== include(page="template/taskfooter" task_id="cmmmc") ==
Nu exista diferente intre securitate.
Topicul de forum nu a fost schimbat.