#include <cstdio>
#include <vector>
#include <queue>
#include <ctype.h>
using namespace std;
#define NMAX 200015
struct Adiacency_List {
int vertex, cost;
bool added;
};
struct Edge_List {
int cost, vertex1, vertex2;
};
struct Queue_comparator {
bool operator() (const Edge_List& a, const Edge_List& b) {
return (a.cost > b.cost);
}
};
struct APM_List {
int father, cost;
};
vector < Adiacency_List > G[NMAX];
priority_queue < Edge_List , vector < Edge_List> , Queue_comparator> E;
APM_List APM[NMAX];
char line[45];
int begin_line;
int N, M, Remained_Vertexes;
int Compute_Read_Values() {
int n = 0;
bool positive = true;
if(line[begin_line]=='-') {
positive = false;
begin_line++;
}
while(isdigit(line[begin_line])) {
n = n*10 + line[begin_line++] - '0';
}
begin_line++;
if(!positive)
return -n;
return n;
}
void Read() {
freopen("apm.in","r",stdin);
scanf("%d%d ",&N,&M);
int x,y,c;
for(int i=1;i<=M;i++) {
fgets(line,40,stdin);
begin_line = 0;
x=Compute_Read_Values();
y=Compute_Read_Values();
c=Compute_Read_Values();
G[x].push_back({y,c,false});
G[y].push_back({x,c,false});
}
}
void Add_Addiacent_Vertexes_to_Queue(int vertex) {
vector < Adiacency_List > :: iterator it;
for(it = G[vertex].begin(); it != G[vertex].end(); ++it) {
if(!(it->added))
{
it->added = true;
E.push({it->cost,vertex,it->vertex});
}
}
}
bool Compute_Best_Solution(Edge_List& sol) {
if(APM[sol.vertex2].father) { // e deja in APM
if(APM[sol.vertex1].father)
return false;
int tamp;
tamp = sol.vertex1;
sol.vertex1 = sol.vertex2;
sol.vertex2 = tamp;
}
return true;
}
void Minimum_Spanning_Tree() {
Remained_Vertexes = N-1;
APM[1].father = -1;
Add_Addiacent_Vertexes_to_Queue(1);
Edge_List best_sol;
while(Remained_Vertexes) {
best_sol = E.top();
E.pop();
if(!Compute_Best_Solution(best_sol))
continue;
APM[best_sol.vertex2].father = best_sol.vertex1;
APM[best_sol.vertex2].cost = best_sol.cost;
Add_Addiacent_Vertexes_to_Queue(best_sol.vertex2);
Remained_Vertexes--;
}
}
void Print() {
freopen("apm.out","w",stdout);
int Sum_of_Costs = 0;
for(int i=2;i<=N;++i) {
Sum_of_Costs += APM[i].cost;
}
printf("%d\n%d\n",Sum_of_Costs,N-1);
for(int i=2;i<=N;++i) {
printf("%d %d\n",i,APM[i].father);
}
}
int main() {
Read();
Minimum_Spanning_Tree();
Print();
return 0;
}
/*
// Kruskal's Algorithm // not working
#include <cstdio>
#include <vector>
#include <queue>
#include <ctype.h>
using namespace std;
#define NMAX 200015
#define maxim(a,b) ((a>b)?(a):(b))
struct Edge_List {
int cost, vertex1, vertex2;
};
struct APM_List {
int father, cost, code;
};
struct Queue_comparator {
bool operator() (const Edge_List& a, const Edge_List& b) {
return (a.cost > b.cost);
}
};
priority_queue < Edge_List , vector < Edge_List> , Queue_comparator> E;
APM_List APM[NMAX];
int Origin[NMAX], HM_Nodes_of_Trees[NMAX];
char line[45];
int begin_line;
int N, M, Integrated_Vertexes, NrCode;
int Compute_Read_Values() {
int n = 0;
bool positive = true;
if(line[begin_line]=='-') {
positive = false;
begin_line++;
}
while(isdigit(line[begin_line])) {
n = n*10 + line[begin_line++] - '0';
}
begin_line++;
if(!positive)
return -n;
return n;
}
void Read() {
freopen("apm.in","r",stdin);
scanf("%d%d ",&N,&M);
int x,y,c;
for(int i=1;i<=M;i++) {
fgets(line,40,stdin);
begin_line = 0;
x=Compute_Read_Values();
y=Compute_Read_Values();
c=Compute_Read_Values();
E.push({c,x,y});
}
}
bool Compute_and_Valide_Solution(Edge_List& sol) {
if(Origin[APM[sol.vertex1].code] == Origin[APM[sol.vertex2].code]) {
if(Origin[APM[sol.vertex1].code])
return false;
// new tree
++NrCode;
APM[sol.vertex1].code = APM[sol.vertex2].code = NrCode;
Origin[APM[sol.vertex2].code] = sol.vertex1;
APM[sol.vertex2].father = sol.vertex1;
APM[sol.vertex2].cost = sol.cost;
HM_Nodes_of_Trees[Origin[APM[sol.vertex2].code]] = 2;
Integrated_Vertexes = maxim(Integrated_Vertexes, HM_Nodes_of_Trees[Origin[APM[sol.vertex2].code]]);
return true;
}
// new edge to the three
if(!Origin[APM[sol.vertex1].code] || !Origin[APM[sol.vertex2].code]) {
if(Origin[APM[sol.vertex2].code]) {
int tamp;
tamp = sol.vertex1;
sol.vertex1 = sol.vertex2;
sol.vertex2 = tamp;
}
APM[sol.vertex2].code = APM[sol.vertex1].code;
APM[sol.vertex2].father = sol.vertex1;
APM[sol.vertex2].cost = sol.cost;
HM_Nodes_of_Trees[Origin[APM[sol.vertex1].code]] ++;
Integrated_Vertexes = maxim(Integrated_Vertexes, HM_Nodes_of_Trees[Origin[APM[sol.vertex1].code]]);
return true;
}
//reunion of threes
HM_Nodes_of_Trees[Origin[APM[sol.vertex1].code]] += HM_Nodes_of_Trees[Origin[APM[sol.vertex2].code]];
if(APM[sol.vertex2].father) {
APM[Origin[APM[sol.vertex2].code]].father = sol.vertex2;
APM[Origin[APM[sol.vertex2].code]].cost = APM[sol.vertex2].cost;
}
Origin[APM[sol.vertex2].code] = Origin[APM[sol.vertex1].code];
APM[sol.vertex2].father = sol.vertex1;
APM[sol.vertex2].cost = sol.cost;
Integrated_Vertexes = maxim(Integrated_Vertexes, HM_Nodes_of_Trees[APM[sol.vertex1].code]);
return true;
}
void Minimum_Spanning_Tree() { // Kruskal's Algorithm
Edge_List sol;
while(Integrated_Vertexes<N) {
sol = E.top();
E.pop();
if(!Compute_and_Valide_Solution(sol))
continue;
}
}
void Print() {
freopen("apm.out","w",stdout);
int Sum_of_Costs = 0;
for(int i=1;i<=N;++i) {
if(APM[i].father)
Sum_of_Costs += APM[i].cost;
}
printf("%d\n%d\n",Sum_of_Costs,N-1);
for(int i=1;i<=N;++i) {
if(APM[i].father)
printf("%d %d\n",i,APM[i].father);
}
}
int main() {
Read();
Minimum_Spanning_Tree();
Print();
return 0;
}
*/