# include <cstring>
# include <iostream>
# include <cmath>
# include <cstdlib>
# include <fstream>
# include <iomanip>
# include <tr1/unordered_map>
# include <string>
using namespace std;
using namespace tr1;
# define c(X) ((int) (X))
typedef long double ld;
const char *FIN = "evaluare.in", *FOU = "evaluare.out";
const int MAX = 100010, F_MAX = 171, P_MAX = 25, SIGMA = 26;
const ld PI = 4.0 * atan (1.0), e = 2.718281828459045;
ifstream f (FIN);
ofstream g (FOU);
unordered_map <string, ld> SG;
char S[MAX], *p = S;
ld F[F_MAX], P[P_MAX];
bool litera (char);
int vezi ();
bool check (char *X);
void init ();
ld deg_rad ();
ld rad_deg ();
ld subexp ();
ld fact ();
ld solve ();
ld f_abs ();
ld f_int ();
ld f_frac ();
ld sigma ();
ld pi_p ();
ld riemannsum ();
ld put ();
ld fib ();
ld _log();
ld _ln();
ld _log10();
ld _exp();
ld _lb();
ld _sqrt();
ld _root();
ld _sin();
ld _cos();
ld _tg();
ld _ctg();
ld _sec();
ld _csc();
ld _arcsin();
ld _arccos();
ld _arctg();
ld _arcctg();
ld _arcsec();
ld _arccsc();
ld _sinh();
ld _cosh();
ld _tgh();
ld _ctgh();
ld _sech();
ld _csch();
ld _arcsinh();
ld _arccosh();
ld _arctgh();
ld _arcctgh();
ld _arcsech();
ld _arccsch();
ld Cb ();
ld An ();
ld Pr ();
int main (void) {
f.getline (S, MAX), init ();
g << setprecision (10) << fixed << solve ();
}
void init () {
F[0] = 1;
for (int i = 1; i < F_MAX; ++i) {
F[i] = i * F[i - 1];
}
for (int i = 0; i < P_MAX; ++i) {
P[i] = pow (10.0, 1.0 * i);
}
}
bool litera (char S) {
return (S >= 'a' && S <= 'z') || (S >= 'A' && S <= 'Z');
}
ld solve () {
ld r = subexp();
while (*p == '+' || *p == '-')
if (*p == '+')
++p, r += subexp();
else if (*p == '-')
++p, r -= subexp();
return r;
}
ld subexp () {
ld r = put();
while (*p == '*' || *p == '/' || *p == '%') {
if (*p == '*')
++p, r *= put();
else if (*p == '/')
++p, r /= put();
else if (*p == '%')
++p, r = fmod (r, put());
}
return r;
}
ld put () {
ld r = fact();
while (*p == '^' || *p == '!') {
if (*p == '^')
++p, r = pow (r, put ());
else ++p, r = F[c(r)];
}
return r;
}
bool check (const char *X) {
for (int i = 0, j = strlen (X); i < j; ++i) {
if (*(p + i) != X[i]) {
return 0;
}
}
return 1;
}
ld fact () {
ld r = 0;
if (check ("(")) {
++p, r = solve(), ++p;
} else if (check ("|")) {
++p, r = f_abs(), ++p;
} else if (check ("[")) {
++p, r = f_int(), ++p;
} else if (check ("{")) {
++p, r = f_frac(), ++p;
} else if (check ("sigma(")) {
p += 6, r = sigma(), ++p;
} else if (check ("pi(")) {
p += 3, r = pi_p(), ++p;
} else if (check ("integrate(")) {
p += 10, r = riemannsum (), ++p;
} else if (check ("sin(")) {
p += 4, r = _sin(), ++p;
} else if (check ("cos(")) {
p += 4, r = _cos(), ++p;
} else if (check ("tg(")) {
p += 3, r = _tg(), ++p;
} else if (check ("ctg(")) {
p += 4, r = _ctg(), ++p;
} else if (check ("sec(")) {
p += 4, r = _sec(), ++p;
} else if (check ("csc(")) {
p += 4, r = _csc(), ++p;
} else if (check ("arcsin(")) {
p += 7, r = _arcsin(), ++p;
} else if (check ("arccos(")) {
p += 7, r = _arccos(), ++p;
} else if (check ("arctg(")) {
p += 6, r = _arctg(), ++p;
} else if (check ("arcctg(")) {
p += 7, r = _arcctg(), ++p;
} else if (check ("arcsec(")) {
p += 7, r = _arcsec(), ++p;
} else if (check ("arccsc(")) {
p += 7, r = _arccsc(), ++p;
} else if (check ("sinh(")) {
p += 5, r = _sinh(), ++p;
} else if (check ("cosh(")) {
p += 5, r = _cosh(), ++p;
} else if (check ("tgh(")) {
p += 4, r = _tgh(), ++p;
} else if (check ("ctgh(")) {
p += 5, r = _ctgh(), ++p;
} else if (check ("sech(")) {
p += 5, r = _sech(), ++p;
} else if (check ("csch(")) {
p += 5, r = _csch(), ++p;
} else if (check ("arcsinh(")) {
p += 8, r = _arcsinh(), ++p;
} else if (check ("arccosh(")) {
p += 8, r = _arccosh(), ++p;
} else if (check ("arctgh(")) {
p += 7, r = _arctgh(), ++p;
} else if (check ("arcctgh(")) {
p += 8, r = _arcctgh(), ++p;
} else if (check ("arcsech(")) {
p += 8, r = _arcsech(), ++p;
} else if (check ("arccsch(")) {
p += 8, r = _arccsch(), ++p;
} else if (check ("degree(")) {
p += 7, r = rad_deg (), ++p;
} else if (check ("radians(")) {
p += 8, r = deg_rad (), ++p;
} else if (check ("fib(")) {
p += 4, r = fib (), ++p;
} else if (check ("ln(")) {
p += 3, r = _ln(), ++p;
} else if (check ("lg(")) {
p += 3, r = _log10(), ++p;
} else if (check ("lb(")) {
p += 3, r = _lb(), ++p;
} else if (check ("log(")) {
p += 4, r = _log(), ++p;
} else if (check ("exp(")) {
p += 4, r = _exp(), ++p;
} else if (check ("sqrt(")) {
p += 5, r = _sqrt(), ++p;
} else if (check ("root(")) {
p += 5, r = _root(), ++p;
} else if (check ("C(")) {
p += 2, r = Cb(), ++p;
} else if (check ("A(")) {
p += 2, r = An(), ++p;
} else if (check ("P(")) {
p += 2, r = Pr(), ++p;
} else if (check ("pi")) {
p += 2, r = PI;
} else if (check ("e")) {
++p, r = e;
} else {
for (int vir = 0; (*p >= '0' && *p <= '9') || litera (*p) || *p == '.' || *p == '_'; ++p) {
if (litera (*p) || *p == '_') {
string arg = "";
for (; litera (*p) || *p == '_'; arg += *p++);
//if (SG.find (arg) == SG.end ()) probleme
*p--, r += SG[arg];
}
else if (*p == '.') vir = 1;
else if (vir == 0) r = r * 10 + *p - '0';
else r += (*p - '0') / P[vir++];
}
}
return r;
}
ld rad_deg () {
ld r = solve ();
return (r * 180) / PI;
}
ld deg_rad () {
ld r = solve ();
return (PI * r) / 180;
}
ld _sin() {
ld r = solve ();
return sin (r);
}
ld _cos() {
ld r = solve ();
return cos (r);
}
ld _tg() {
ld r = solve ();
return tan (r);
}
ld _ctg() {
ld r = solve ();
return 1.0 / tan (r);
}
ld _sec() {
ld r = solve ();
return 1.0 / cos (r);
}
ld _csc() {
ld r = solve ();
return 1.0 / sin (r);
}
// arc function
ld _arcsin() {
ld r = solve ();
return asin (r);
}
ld _arccos() {
ld r = solve ();
return acos (r);
}
ld _arctg() {
ld r = solve ();
return atan (r);
}
ld _arcctg() {
ld r = solve ();
return PI / 2.0 - atan (r);
}
ld _arcsec() {
ld r = solve ();
return acos (1.0 / r);
}
ld _arccsc() {
ld r = solve ();
return asin (1.0 / r);
}
// hyperbolic
ld _sinh() {
ld r = solve ();
return sinh (r);
}
ld _cosh() {
ld r = solve ();
return cosh (r);
}
ld _tgh() {
ld r = solve ();
return tanh (r);
}
ld _ctgh() {
ld r = solve ();
return 1.0 / tanh (r);
}
ld _sech() {
ld r = solve ();
return 1.0 / cosh (r);
}
ld _csch() {
ld r = solve ();
return 1.0 / sinh (r);
}
// arc hyperbolic
ld _arcsinh() {
ld r = solve ();
return log (r + sqrt (r * r + 1));
}
ld _arccosh() {
ld r = solve ();
return log (r + sqrt (r * r - 1));
}
ld _arctgh() {
ld r = solve ();
return 1.0 / 2.0 * log ((1.0 + r) / (1.0 - r));
}
ld _arcctgh() {
ld r = solve ();
return 1.0 / 2.0 * log ((r + 1.0) / (r - 1.0));
}
ld _arcsech() {
ld r = 1.0 / solve ();
return log (r + sqrt (r * r - 1));
}
ld _arccsch() {
ld r = 1.0 / solve ();
return log (r + sqrt (r * r + 1));
}
// stop trig
ld _log() {
ld a, b;
a = solve (), ++p, b = solve ();
return log (b) / log (a);
}
ld _ln() {
ld r = solve ();
return log (r);
}
ld _log10() {
ld r = solve ();
return log10 (r);
}
ld _lb() {
ld r = solve ();
return log (r) / log (2);
}
ld _sqrt() {
ld r = solve ();
return sqrt (r);
}
ld _root() {
ld r, grade;
r = solve (), ++p, grade = solve (), ++p;
return pow (r, 1.0 / grade);
}
ld _exp() {
ld r = solve ();
return exp (r);
}
ld f_abs () {
ld r = solve ();
return fabs (r);
}
ld f_int () {
ld r = solve ();
return floor (r);
}
ld f_frac () {
ld r = solve ();
return r - floor (r);
}
ld sigma () {
int st, dr;
ld r = 0;
string arg = "";
for (; *p != ','; arg += *p++);
++p, st = (int) solve (), ++p, dr = (int) solve (), ++p;
int nr = vezi ();
for (int i = st; i <= dr; ++i) {
p -= nr;
SG[arg] = i;
r += solve ();
}
return r;
}
ld pi_p () {
int st, dr;
ld r = 1;
string arg = "";
for (; *p != ','; arg += *p++);
++p, st = (int) solve (), ++p, dr = (int) solve (), ++p;
int nr = vezi ();
for (int i = st; i <= dr; ++i) {
p -= nr;
SG[arg] = i;
r *= solve ();
}
return r;
}
const ld subintervals = 10000;
ld riemannsum () { // definite integrals
ld st, dr;
string arg = "";
for (; *p != ','; arg += *p++);
++p, st = solve (), ++p, dr = solve (), ++p;
ld sum = 0.0, subint = (dr - st) / subintervals, alfa = st + subint / 2.0;
int nr = vezi ();
for (int k = 0; k < subintervals; ++k) {
p -= nr;
SG[arg] = alfa;
sum += solve () * subint;
alfa += subint;
}
return sum;
}
int vezi () {
int nr = 0;
for (int nr1 = 0; ; ++p, ++nr) {
if (*p == '(') ++nr1;
else if (*p == ')' && nr1 == 0) break;
else if (*p == ')') --nr1;
}
return nr;
}
ld Cb () {
ld r, rr;
r = solve (), ++p, rr = solve ();
return F[c(r)] / (F[c(rr)] * F[c(r - rr)]);
}
ld An () {
ld r, rr;
r = solve (), ++p, rr = solve ();
return F[c(r)] / F[c(r - rr)];
}
ld Pr () {
ld r;
r = solve (), ++p;
return F[c(r)];
}
int MOD, Z[2][2], M[2][2];
inline void mult (int A[2][2], int B[2][2]) {
int C[2][2];
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
C[i][j] = 0;
for (int k = 0; k < 2; ++k) {
C[i][j] += 1LL * A[i][k] * B[k][j] % MOD;
if (C[i][j] >= MOD) C[i][j] -= MOD;
}
}
}
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
A[i][j] = C[i][j];
}
}
}
inline void powr (int P, int M[2][2]) {
M[0][0] = M[1][1] = 1;
for (; P; P >>= 1) {
if (P & 1) {
mult (M, Z);
}
mult (Z, Z);
}
}
ld fib () {
int N;
N = (int) solve (), ++p, MOD = (int) solve ();
Z[0][0] = 0, Z[0][1] = 1;
Z[1][0] = 1, Z[1][1] = 1;
powr (N - 1, M);
return M[1][1];
}