# include <cstring>
# include <cmath>
# include <cstdlib>
# include <fstream>
# include <iomanip>
# include <tr1/unordered_map>
using namespace std ;
using namespace tr1;
# define c(X) ((int) (X))
typedef double ld ;
const char *FIN = "evaluare.in", *FOU = "evaluare.out" ;
const int MAX = 100010, F_MAX = 171, P_MAX = 25, SIGMA = 26 ;
const double PI = 4.0 * atan (1.0), e = 2.718281828459045 ;
ifstream f (FIN) ;
ofstream g (FOU) ;
char S[MAX], *p = S;
ld F[F_MAX], P[P_MAX], SG[SIGMA] ;
bool litera (char);
int vezi ();
bool check ( char *X ) ;
void init ();
ld subexp ();
ld fact ();
ld solve ();
ld f_abs ();
ld f_int ();
ld f_frac ();
ld sigma ();
ld pi_p ();
ld put ();
ld _log();
ld _ln();
ld _log10();
ld _exp();
ld _lb();
ld _sqrt();
ld _sin();
ld _cos();
ld _tg();
ld _ctg();
ld _sec();
ld _csc();
ld _arcsin();
ld _arccos();
ld _arctg();
ld _arcctg();
ld _arcsec();
ld _arccsc();
ld _sinh();
ld _cosh();
ld _tgh();
ld _ctgh();
ld _sech();
ld _csch();
ld _arcsinh();
ld _arccosh();
ld _arctgh();
ld _arcctgh();
ld _arcsech();
ld _arccsch();
ld Cb ();
ld An ();
ld Pr ();
int main (void) {
f.getline (S, MAX), init () ;
g << setprecision (0) << fixed << solve () ;
}
void init () {
F[0] = 1;
for (int i = 1; i < F_MAX; ++i) {
F[i] = i * F[i - 1] ;
}
for (int i = 0; i < P_MAX; ++i) {
P[i] = pow (10.0, 1.0 * i) ;
}
}
bool litera ( char S ) {
return (S >= 'a' && S <= 'z') || (S >= 'A' && S <= 'Z') ;
}
ld solve () {
ld r = subexp();
while ( *p == '+' || *p == '-' )
if ( *p == '+' )
++p, r += subexp() ;
else if ( *p == '-' )
++p, r -= subexp() ;
return r;
}
ld subexp () {
int r = put();
while ( *p == '*' || *p == '/' || *p == '%' ) {
if ( *p == '*' )
++p, r *= put() ;
else if ( *p == '/' )
++p, r /= put() ;
else if ( *p == '%' )
++p, r = fmod (r, put()) ;
}
return r;
}
ld put () {
ld r = fact() ;
while ( *p == '^' || *p == '!' ) {
if ( *p == '^' )
++p, r = pow (r, put ());
else ++p, r = F[c(r)] ;
}
return r ;
}
bool check ( const char *X ) {
for (int i = 0, j = strlen (X); i < j; ++i) {
if ( *(p + i) != X[i] ) {
return 0 ;
}
}
return 1 ;
}
ld fact () {
ld r = 0 ;
if ( check ( "(" ) ) {
++p, r = solve(), ++p;
} else if ( check ( "|" ) ) {
++p, r = f_abs(), ++p ;
} else if ( check ( "[" ) ) {
++p, r = f_int(), ++p ;
} else if ( check ( "{" ) ) {
++p, r = f_frac(), ++p ;
} else if ( check ( "sigma(" ) ) {
p += 6, r = sigma(), ++p ;
} else if ( check ( "pi(" ) ) {
p += 3, r = pi_p(), ++p ;
} else if ( check ( "sin(" ) ) {
p += 4, r = _sin(), ++p ;
} else if ( check ( "cos(" ) ) {
p += 4, r = _cos(), ++p ;
} else if ( check ( "tg(" ) ) {
p += 3, r = _tg(), ++p ;
} else if ( check ( "ctg(" ) ) {
p += 4, r = _ctg(), ++p ;
} else if ( check ( "sec(" ) ) {
p += 4, r = _sec(), ++p ;
} else if ( check ( "csc(" ) ) {
p += 4, r = _csc(), ++p ;
} else if ( check ( "arcsin(" ) ) {
p += 7, r = _arcsin(), ++p ;
} else if ( check ( "arccos(" ) ) {
p += 7, r = _arccos(), ++p ;
} else if ( check ( "arctg(" ) ) {
p += 6, r = _arctg(), ++p ;
} else if ( check ( "arcctg(" ) ) {
p += 7, r = _arcctg(), ++p ;
} else if ( check ( "arcsec(" ) ) {
p += 7, r = _arcsec(), ++p ;
} else if ( check ( "arccsc(" ) ) {
p += 7, r = _arccsc(), ++p ;
} else if ( check ( "sinh(" ) ) {
p += 5, r = _sinh(), ++p ;
} else if ( check ( "cosh(" ) ) {
p += 5, r = _cosh(), ++p ;
} else if ( check ( "tgh(" ) ) {
p += 4, r = _tgh(), ++p ;
} else if ( check ( "ctgh(" ) ) {
p += 5, r = _ctgh(), ++p ;
} else if ( check ( "sech(" ) ) {
p += 5, r = _sech(), ++p ;
} else if ( check ( "csch(" ) ) {
p += 5, r = _csch(), ++p ;
} else if ( check ( "arcsinh(" ) ) {
p += 8, r = _arcsinh(), ++p ;
} else if ( check ( "arccosh(" ) ) {
p += 8, r = _arccosh(), ++p ;
} else if ( check ( "arctgh(" ) ) {
p += 7, r = _arctgh(), ++p ;
} else if ( check ( "arcctgh(" ) ) {
p += 8, r = _arcctgh(), ++p ;
} else if ( check ( "arcsech(" ) ) {
p += 8, r = _arcsech(), ++p ;
} else if ( check ( "arccsch(" ) ) {
p += 8, r = _arccsch(), ++p ;
} else if ( check ( "ln(" ) ) {
p += 3, r = _ln(), ++p ;
} else if ( check ( "lg(" ) ) {
p += 3, r = _log10(), ++p ;
} else if ( check ( "lb(" ) ) {
p += 3, r = _lb(), ++p ;
} else if ( check ( "log(" ) ) {
p += 4, r = _log(), ++p ;
} else if ( check ( "exp(" ) ) {
p += 4, r = _exp(), ++p ;
} else if ( check ( "sqrt(" ) ) {
p += 5, r = _sqrt(), ++p ;
} else if ( check ( "C(" ) ) {
p += 2, r = Cb(), ++p ;
} else if ( check ( "A(" ) ) {
p += 2, r = An(), ++p ;
} else if ( check ( "P(" ) ) {
p += 2, r = Pr(), ++p ;
} else if ( check ( "pi" ) ) {
p += 2, r = PI ;
} else if ( check ( "e" ) ) {
++p, r = e ;
} else {
for ( int vir = 0; (*p >= '0' && *p <= '9') || litera (*p) || *p == '.' ; ++p ) {
if ( litera (*p) ) r = r * 10 + SG[c(*p)];
else if ( *p == '.' ) vir = 1 ;
else if ( vir == 0 ) r = r * 10 + *p - '0';
else r += (*p - '0') / P[vir++] ;
}
}
return r;
}
ld _sin() {
ld r = solve () ;
return sin (r) ;
}
ld _cos() {
ld r = solve () ;
return cos (r) ;
}
ld _tg() {
ld r = solve () ;
return tan (r) ;
}
ld _ctg() {
ld r = solve () ;
return 1.0 / tan (r) ;
}
ld _sec() {
ld r = solve () ;
return 1.0 / cos (r) ;
}
ld _csc() {
ld r = solve () ;
return 1.0 / sin (r) ;
}
// arc function
ld _arcsin() {
ld r = solve () ;
return asin (r) ;
}
ld _arccos() {
ld r = solve () ;
return acos (r) ;
}
ld _arctg() {
ld r = solve () ;
return atan (r) ;
}
ld _arcctg() {
ld r = solve () ;
return PI / 2.0 - atan (r) ;
}
ld _arcsec() {
ld r = solve () ;
return acos (1.0 / r) ;
}
ld _arccsc() {
ld r = solve () ;
return asin (1.0 / r) ;
}
// hyperbolic
ld _sinh() {
ld r = solve () ;
return sinh (r) ;
}
ld _cosh() {
ld r = solve () ;
return cosh (r) ;
}
ld _tgh() {
ld r = solve () ;
return tanh (r) ;
}
ld _ctgh() {
ld r = solve () ;
return 1.0 / tanh (r) ;
}
ld _sech() {
ld r = solve () ;
return 1.0 / cosh (r) ;
}
ld _csch() {
ld r = solve () ;
return 1.0 / sinh (r) ;
}
// arc hyperbolic
ld _arcsinh() {
ld r = solve () ;
return log (r + sqrt (r * r + 1) ) ;
}
ld _arccosh() {
ld r = solve () ;
return log (r + sqrt (r * r - 1) ) ;
}
ld _arctgh() {
ld r = solve () ;
return 1.0 / 2.0 * log ((1.0 + r) / (1.0 - r)) ;
}
ld _arcctgh() {
ld r = solve () ;
return 1.0 / 2.0 * log ((r + 1.0) / (r - 1.0)) ;
}
ld _arcsech() {
ld r = 1.0 / solve () ;
return log (r + sqrt (r * r - 1) ) ;
}
ld _arccsch() {
ld r = 1.0 / solve () ;
return log (r + sqrt (r * r + 1) ) ;
}
// stop trig
ld _log() {
ld a, b ;
a = solve (), ++p, b = solve () ;
return log (b) / log (a) ;
}
ld _ln() {
ld r = solve () ;
return log (r) ;
}
ld _log10() {
ld r = solve () ;
return log10 (r) ;
}
ld _lb() {
ld r = solve () ;
return log (r) / log (2) ;
}
ld _sqrt() {
ld r = solve () ;
return sqrt (r) ;
}
ld _exp() {
ld r = solve () ;
return exp (r) ;
}
ld f_abs () {
ld r = solve () ;
return fabs (r) ;
}
ld f_int () {
ld r = solve () ;
return floor (r) ;
}
ld f_frac () {
ld r = solve () ;
return r - floor (r) ;
}
ld sigma () {
int st, dr ;
ld r = 0 ;
char ch = *p++;
++p, st = (int) solve (), ++p, dr = (int) solve (), ++p ;
int nr = vezi () ;
for ( int i = st; i <= dr; ++i ) {
p -= nr ;
SG[c(ch)] = i ;
r += solve () ;
}
return r ;
}
ld pi_p () {
int st, dr ;
ld r = 1 ;
char ch = *p++;
++p, st = (int) solve (), ++p, dr = (int) solve (), ++p ;
int nr = vezi () ;
for ( int i = st; i <= dr; ++i ) {
p -= nr ;
SG[c(ch)] = i ;
r *= solve () ;
}
return r ;
}
int vezi () {
int nr = 0 ;
for ( int nr1 = 0; ; ++p, ++nr ) {
if ( *p == '(' ) ++nr1 ;
else if ( *p == ')' && nr1 == 0 ) break ;
else if ( *p == ')' ) --nr1 ;
}
return nr ;
}
ld Cb () {
ld r, rr ;
r = solve (), ++p, rr = solve () ;
return F[c(r)] / (F[c(rr)] * F[c(r - rr)]) ;
}
ld An () {
ld r, rr ;
r = solve (), ++p, rr = solve () ;
return F[c(r)] / F[c(r - rr)] ;
}
ld Pr () {
ld r ;
r = solve (), ++p ;
return F[c(r)] ;
}