#include <cstdio>
#include <cstring>
#include <cassert>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
typedef vector<int>::iterator it;
const int MaxN = 355;
const int NIL = -1;
const int oo = 0x3f3f3f3f;
vector<int> G[MaxN];
int N, Source, Sink, Capacity[MaxN][MaxN], Cost[MaxN][MaxN];
int Father[MaxN], Distance[MaxN], Flow[MaxN][MaxN];
int TimesInQ[MaxN];
bool InQ[MaxN];
queue<int> Q;
int Solution;
void InitBFS(int Start) {
memset(Father, NIL, sizeof(Father));
Q.push(Start), Father[Start] = Start;
}
bool BFS(int Start, int End) {
for (InitBFS(Start); !Q.empty(); Q.pop()) {
int X = Q.front();
if (X == End)
continue;
for (it Y = G[X].begin(); Y != G[X].end(); ++Y)
if (Father[*Y] == NIL && Capacity[X][*Y] > Flow[X][*Y])
Q.push(*Y), Father[*Y] = X;
}
return (Father[End] != NIL);
}
int FordFulkerson() {
int MaxFlow = 0;
while (BFS(Source, Sink)) {
for (it Y = G[Sink].begin(); Y != G[Sink].end(); ++Y) {
if (Father[*Y] == NIL || Capacity[*Y][Sink] <= Flow[*Y][Sink])
continue;
Father[Sink] = *Y;
int CurrentFlow = oo;
for (int X = Sink; X != Source; X = Father[X])
CurrentFlow = min(CurrentFlow, Capacity[Father[X]][X] - Flow[Father[X]][X]);
for (int X = Sink; X != Source; X = Father[X])
Flow[Father[X]][X] += CurrentFlow, Flow[X][Father[X]] -= CurrentFlow;
MaxFlow += CurrentFlow;
}
}
return MaxFlow;
}
void InitBF(int Start) {
memset(Distance, oo, sizeof(Distance));
memset(TimesInQ, 0, sizeof(TimesInQ));
Q.push(Start), InQ[Start] = true, Father[Start] = Start, Distance[Start] = 0;
}
int BellmanFord(int Start) {
for (InitBF(Start); !Q.empty(); Q.pop()) {
int X = Q.front(); InQ[X] = false, ++TimesInQ[X];
if (TimesInQ[X] > N)
return X;
for (it Y = G[X].begin(); Y != G[X].end(); ++Y) {
if (Capacity[X][*Y] > Flow[X][*Y] && Distance[X] + Cost[X][*Y] < Distance[*Y]) {
Distance[*Y] = Distance[X] + Cost[X][*Y], Father[*Y] = X;
if (!InQ[*Y])
Q.push(*Y), InQ[*Y] = true, ++TimesInQ[*Y];
}
}
}
return NIL;
}
int FindCycle() {
memset(Father, NIL, sizeof(Father));
for (int X = 1, Cycle; X <= N; ++X)
if (Father[X] == NIL)
if ((Cycle = BellmanFord(X)) != NIL)
return Cycle;
return NIL;
}
int MaximumFlow() {
int MaxFlow, FlowCost = 0;
MaxFlow = FordFulkerson();
int Start, X;
while ((Start = FindCycle()) != NIL) {
int CurrentFlow = oo;
X = Start;
do {
CurrentFlow = min(CurrentFlow, Capacity[Father[X]][X] - Flow[Father[X]][X]);
X = Father[X];
} while (X != Start);
X = Start;
do {
Flow[Father[X]][X] += CurrentFlow, Flow[X][Father[X]] -= CurrentFlow;
X = Father[X];
} while (X != Start);
}
for (int X = 1; X <= N; ++X)
for (int Y = 1; Y <= N; ++Y)
FlowCost += (Flow[X][Y] > 0 ? Flow[X][Y] * Cost[X][Y] : 0);
return FlowCost;
}
void Read() {
assert(freopen("fmcm.in", "r", stdin));
int M; assert(scanf("%d %d %d %d", &N, &M, &Source, &Sink) == 4);
for (; M > 0; --M) {
int X, Y; assert(scanf("%d %d", &X, &Y) == 2);
G[X].push_back(Y), G[Y].push_back(X);
assert(scanf("%d %d", &Capacity[X][Y], &Cost[X][Y]) == 2);
Cost[Y][X] = -Cost[X][Y];
}
}
void Print() {
assert(freopen("fmcm.out", "w", stdout));
printf("%d\n", Solution);
}
int main() {
Read();
Solution = MaximumFlow();
Print();
return 0;
}