#include <algorithm>
#include <cassert>
#include <cstdio>
#include <cstring>
#include <queue>
#include <set>
#include <vector>
using namespace std;
inline int next_int() {
int d;
scanf("%d", &d);
return d;
}
const int INF = 1e9;
struct MinCostMaxFlow {
int V, E, min_cost, max_flow, path_cost, path_flow, where;
vector<int> from, to, capacity, cost;
MinCostMaxFlow(int n) {
V = n, E = 0, min_cost = 0, max_flow = 0;
from.clear(), to.clear(), capacity.clear(), cost.clear();
}
void add_edge(int a, int b, int c, int d) {
E++, from.push_back(a), to.push_back(b), capacity.push_back(c), cost.push_back(+d);
E++, from.push_back(b), to.push_back(a), capacity.push_back(0), cost.push_back(-d);
}
void run(const int source, const int sink) {
vector<int> e_begin(V, -1), e_next(E);
for (int e = 0; e < E; e++) {
e_next[e] = e_begin[from[e]];
e_begin[from[e]] = e;
}
vector<int> dist(V, INF);
dist[source] = 0;
for (int v = 0; v < V; v++) {
int done = 1;
for (int e = 0; e < E; e++) {
int a = from[e], b = to[e], c = capacity[e], d = cost[e];
if (dist[a] < INF && c > 0 && dist[a] + d < dist[b]) {
dist[b] = dist[a] + d;
done = 0;
}
}
if (done) {
break;
}
}
path_cost = dist[sink];
while (true) {
for (int e = 0; e < E; e++) {
int a = from[e], b = to[e];
if (dist[a] < INF && dist[b] < INF) {
cost[e] += dist[a] - dist[b];
}
}
vector<int> prev(V, -1), seen(V, false);
dist.assign(V, INF);
dist[source] = 0;
priority_queue<pair<int, int> , vector<pair<int, int> > , greater<pair<int, int> > > Q;
Q.push(make_pair(0, source));
while (!Q.empty()) {
int current_dist = Q.top().first;
int current_where = Q.top().second;
Q.pop();
if (seen[current_where] == false) {
seen[current_where] = true;
for (int e = e_begin[current_where]; e != -1; e = e_next[e]) {
int b = to[e], c = capacity[e], d = cost[e];
if (c > 0 && current_dist + d < dist[b]) {
Q.push(make_pair(current_dist + d, b));
dist[b] = current_dist + d;
prev[b] = e;
}
}
}
}
if (dist[sink] == INF) {
break;
}
path_flow = 1;
for (where = sink; where != source; where = from[prev[where]]) {
capacity[prev[where] ^ 0]--;
capacity[prev[where] ^ 1]++;
}
path_cost += dist[sink];
min_cost += path_flow * path_cost;
max_flow += path_flow;
}
}
};
int main() {
int c1 = next_int();
int c2 = next_int();
int n = c1 + c2 + 2;
int source = c1 + c2;
int sink = c1 + c2 + 1;
MinCostMaxFlow mcmf(n);
for (int i = 0; i < c1; i++) {
mcmf.add_edge(source, i, 1, 0);
}
for (int i = 0; i < c2; i++) {
mcmf.add_edge(c1 + i, sink, 1, 0);
}
int m = next_int();
vector<int> edges;
for (int i = 0; i < m; i++) {
int x = next_int();
int y = next_int();
int z = next_int();
edges.push_back(mcmf.E);
mcmf.add_edge(x - 1, c1 + y - 1, 1, z);
}
mcmf.run(source, sink);
printf("%d\n", mcmf.max_flow);
printf("%d\n", mcmf.min_cost);
for (int i = 0; i < m; i++) {
if (mcmf.capacity[edges[i]] == 0) {
printf("%d ", i + 1);
}
}
return 0;
}