Cod sursa(job #529378)

Utilizator PlayLikeNeverB4George Marcus PlayLikeNeverB4 Data 4 februarie 2011 20:37:44
Problema Flux maxim de cost minim Scor 70
Compilator cpp Status done
Runda Arhiva educationala Marime 6.04 kb
#include <stdio.h>
#include <assert.h>
#define maxn 356
#define oo 200000000
#define ll long long

struct nod {
	int inf;
	nod *next;
} *A[maxn];

int i,N,M,st,dest,hp,S;
ll R;
int C[maxn][maxn],D[maxn],Cost[maxn][maxn],from[maxn],H[maxn],poz[maxn];

void citire()
{
	nod *q; int x,y,c,z;
	scanf("%d %d %d %d",&N,&M,&st,&dest);
	for(i=1;i<=M;i++)
	{
		scanf("%d %d %d %d",&x,&y,&c,&z);
		q=new nod; q->inf=y; q->next=A[x]; A[x]=q;
		q=new nod; q->inf=x; q->next=A[y]; A[y]=q;
		C[x][y]=c; Cost[x][y]=z; Cost[y][x]=-z;
	}
}

void BF(int sursa)
{
	nod *prim,*ultim,*nou,*aux; int pi,ps,k; pi=ps=1;
	prim=new nod; ultim=new nod;
	prim->inf=sursa; ultim=prim;
	for(i=1;i<=N;i++) D[i]=oo;
	D[sursa]=0;
	while(ps<=pi)
	{
		k=prim->inf;
		for(nod *q=A[k];q;q=q->next)
			if(C[k][q->inf]>0 && D[k]+Cost[k][q->inf]<D[q->inf])
			{
				pi++;
				D[q->inf]=D[k]+Cost[k][q->inf];
				nou=new nod;
				nou->inf=q->inf;
				ultim->next=nou;
				ultim=nou;
			}
		aux=prim; 
		prim=prim->next; 
		delete(aux); 
		ps++;
	}
	S=D[dest];
}

void costuri_poz()
{
	for(i=1;i<=N;i++)
		for(nod *q=A[i];q;q=q->next)
			if(D[i]!=oo && D[q->inf]!=oo)
				Cost[i][q->inf]=Cost[i][q->inf]+D[i]-D[q->inf];
}

inline ll min(ll a, ll b)
{
	if(a>b) return b;
	return a;
}
void swap(int &a,int &b)
{
	int aux=a;
	a=b;
	b=aux;
}
void downheap(int k)
{
	int son;
	do
	{
		son=0;
		if(2*k<=hp)
		{
			son=2*k;
			if(son+1<=hp && D[H[son+1]]<D[H[son]])
				son++;
			if(D[H[son]]>D[H[k]]) son=0;
		}
		if(son)
		{
			swap(poz[H[k]],poz[H[son]]);
			swap(H[k],H[son]);
			k=son;
		}
	}
	while(son);
}
void upheap(int k)
{
	while(k>1 && D[H[k]]<D[H[k/2]])
	{
		swap(poz[H[k]],poz[H[k/2]]);
		swap(H[k],H[k/2]);
		k=k/2;
	}
}
void insert(int k)
{
	H[++hp]=k;
	poz[k]=hp;
	upheap(hp);
}
int radacina()
{
	int r=H[1];
	H[1]=H[hp];
	poz[H[1]]=1;
	poz[H[hp]]=hp;
	hp--;
	downheap(1);
	return r;
}

int dijk()
{
	int k;
	costuri_poz();
	for(i=1;i<=N;i++) { D[i]=oo; poz[i]=0; from[i]=0; H[i]=0; }
	hp=0; D[st]=0; insert(st);
	while(hp)
	{
		k=radacina();
		for(nod *q=A[k];q;q=q->next)
		{
			if (C[k][q->inf]>0) assert(Cost[k][q->inf]>=0);
			if(C[k][q->inf]>0 && D[k]+Cost[k][q->inf]<D[q->inf])
			{
				D[q->inf]=D[k]+Cost[k][q->inf];
				from[q->inf]=k;
				if(poz[q->inf]==0)
					insert(q->inf);
				else upheap(poz[q->inf]);
			}
		}
	}
	if(D[dest]!=oo) return 1;
	return 0;
}

int main()
{
	freopen("fmcm.in","r",stdin);
	freopen("fmcm.out","w",stdout);
	citire();
	BF(st);
	while(dijk())
	{
		int k=dest,fmin=oo;
		do
		{
			fmin=min(fmin,C[from[k]][k]);
			k=from[k];
		}
		while(k!=st);
		k=dest;
		do
		{
			C[from[k]][k]-=fmin;
			C[k][from[k]]+=fmin;
			k=from[k];
		}
		while(k!=st);
		S+=D[dest];
		R+=fmin*S;
	}
	printf("%d",R);
}
/*
#include <stdio.h>
#include <assert.h>
#include <vector>

using namespace std;

#define maxn 360
#define inf 2000000000
#define ll long long

int N, M, S, D;
int Drum, L, Sum;
vector <int> A[maxn];
int G[maxn];
int Dist[maxn], From[maxn], Pot[maxn];
int H[maxn], P[maxn];
int C[maxn][maxn], F[maxn][maxn], Cost[maxn][maxn];

void push(int x)
{
	int aux;

	while (x/2>1 && Dist[H[x]]<Dist[H[x/2]])
	{
		aux = H[x], H[x] = H[x/2], H[x/2] = aux;

		P[H[x]] = x;
		P[H[x/2]] = x/2;

		x /= 2;
	}
}

void pop(int x)
{
	int y = 0, aux;

	while (x != y)
	{
		y = x;
		if (y*2<=L && Dist[H[x]]>Dist[H[y*2]]) x = y*2;
		if (y*2+1 <= L && Dist[H[x]]>Dist[H[y*2+1]]) x = y*2+1;

		aux = H[x], H[x] = H[y], H[y] = aux;
		P[H[x]] = x;
		P[H[y]] = y;
	}
}

int BellmanFord()
{
	int i, stop = 0, j, k;

	for (i = 1; i <= N; i++) Dist[i] = inf;
	Dist[S] = 0;

	for (i = 1; i <= N && !stop; i++)
	{
		stop = 1;

		for (j = 1; j <= N; j++)
			for (k = 0; k < G[j]; k++)
				if (C[j][A[j][k]]-F[j][A[j][k]]>0 && Dist[j]+Cost[j][A[j][k]]<Dist[A[j][k]])
				{
					stop = 0;
					Dist[A[j][k]] = Dist[j] + Cost[j][A[j][k]];
				}
	}

	Sum = Dist[D];

	return stop;
}

int Dijkstra()
{
	int i, j;

	// Fac transformarea astfel incat sa am doar costuri pozitive pe arcele active (cele cu capacitate > flux)

	for (i = 1; i <= N; i++)
		for (j = 0; j < G[i]; j++) 
			if (Dist[i] != inf && Dist[A[i][j]] != inf) Cost[i][A[i][j]] += Dist[i] - Dist[A[i][j]];

	// Initializari

	for (i = 1; i <= N; i++)
	{
		Dist[i] = inf;
		H[i] = i;
		P[i] = i;
		From[i] = -1;
	}

	// Fac Dijkstra

	Dist[S] = 0;
	H[1] = S, H[S] = 1;
	P[1] = S, P[S] = 1;
	L = N;

	while (L>1 && Dist[H[1]] != inf)
	{
		for (i = 0; i < G[H[1]]; i++)
		{
			int v = A[H[1]][i];

			if (C[H[1]][v]-F[H[1]][v]>0) assert(Cost[H[1]][v]>=0); // Verific daca am arce cu cost negativ active

			if (C[H[1]][v]-F[H[1]][v]>0 && Dist[H[1]]+Cost[H[1]][v]<Dist[v])
			{
				Dist[v] = Dist[H[1]] + Cost[H[1]][v];
				From[v] = H[1];
				push(P[v]);
			}
		}

		H[1] = H[L--];
		P[H[1]] = 1;
		if (L > 1) pop(1);
	}

	// Daca am gasit drum, cresc fluxul pe el

	if (Dist[D] != inf) 
	{
		int Vmin = inf;
		Drum = 1;

		for (i = D; i != S; i = From[i]) 
			Vmin = min(Vmin, C[From[i]][i] - F[From[i]][i]);

		for (i = D; i != S; i = From[i]) 
		{
			F[From[i]][i] += Vmin;
			F[i][From[i]] -= Vmin;
		}

		Sum += Dist[D];
		return Vmin * Sum;
	}

	return 0;
}

ll Flux()
{
	ll Rez = 0;
	Drum = 1;

	// Cat timp mai exista un drum valabil, bag flux

	while (Drum)
	{
		Drum = 0;
		Rez += Dijkstra();
	}

	return Rez;
}

int main()
{
	freopen("fmcm.in", "r", stdin);
	freopen("fmcm.out", "w", stdout);

	int i, x, y, z, cap;

	// Citesc graful

	scanf("%d %d %d %d ", &N, &M, &S, &D);

	for (i = 1; i <= M; i++)
	{
		scanf("%d %d %d %d ", &x, &y, &cap, &z);

		A[x].push_back(y);
		A[y].push_back(x);

		C[x][y] = cap;
		Cost[x][y] = z;
		Cost[y][x] = -z;
	}

	for (i = 1; i <= N; i++) G[i] = A[i].size();

	// Fac primul Bellman-Ford, cand inca am costuri negative

	assert(BellmanFord());

	// Calculez fluxul maxim de cost minim

	printf("%lld\n", Flux());

	return 0;
}*/