// SPDX-License-Identifier: BSD-3-Clause
import java.io.*;
import java.util.*;
public class Main {
static class Task {
public static final String INPUT_FILE = "distante.in";
public static final String OUTPUT_FILE = "distante.out";
private static final long INF = 1L << 60; // suficient > dist max
private final List<String> verdicts = new ArrayList<>();
public void solve() {
readInput();
writeOutput();
}
/* ------------------- CITIRE rapidă, stil laborator ------------------- */
private void readInput() {
try (BufferedReader br = new BufferedReader(new FileReader(INPUT_FILE))) {
int T = Integer.parseInt(br.readLine().trim());
for (int t = 0; t < T; t++) {
StringTokenizer st = new StringTokenizer(br.readLine());
int N = Integer.parseInt(st.nextToken());
int M = Integer.parseInt(st.nextToken());
int S = Integer.parseInt(st.nextToken());
long[] claimed = new long[N + 1];
st = new StringTokenizer(br.readLine());
for (int i = 1; i <= N; i++) claimed[i] = Long.parseLong(st.nextToken());
int[] head = new int[N + 1];
Arrays.fill(head, -1);
int[] to = new int[2 * M];
int[] cost = new int[2 * M];
int[] nxt = new int[2 * M];
int idx = 0;
for (int i = 0; i < M; i++) {
st = new StringTokenizer(br.readLine());
int u = Integer.parseInt(st.nextToken());
int v = Integer.parseInt(st.nextToken());
int c = Integer.parseInt(st.nextToken());
to[idx] = v; cost[idx] = c; nxt[idx] = head[u]; head[u] = idx++;
to[idx] = u; cost[idx] = c; nxt[idx] = head[v]; head[v] = idx++;
}
long[] dist = dijkstra(N, S, head, to, cost, nxt);
boolean ok = true;
for (int i = 1; i <= N && ok; i++) {
long real = dist[i] >= INF / 2 ? -1 : dist[i];
if (real != claimed[i]) ok = false;
}
verdicts.add(ok ? "DA" : "NU");
}
} catch (IOException e) {
throw new RuntimeException(e);
}
}
/* ------------------------- SCRIERE --------------------------- */
private void writeOutput() {
try (BufferedWriter bw = new BufferedWriter(new FileWriter(OUTPUT_FILE))) {
for (String v : verdicts) {
bw.write(v);
bw.newLine();
}
} catch (IOException e) {
throw new RuntimeException(e);
}
}
/* ------------------- Dijkstra cu heap manual ------------------- */
private static long[] dijkstra(int N, int S, int[] head, int[] to, int[] cost, int[] nxt) {
long[] dist = new long[N + 1];
Arrays.fill(dist, INF);
dist[S] = 0;
int[] heap = new int[N + 1];
int[] pos = new int[N + 1];
int hsz = 1;
heap[1] = S; pos[S] = 1;
while (hsz > 0) {
int u = heap[1];
pos[u] = 0;
heap[1] = heap[hsz--];
if (hsz > 0) pos[heap[1]] = 1;
siftDown(heap, pos, dist, hsz, 1);
for (int e = head[u]; e != -1; e = nxt[e]) {
int v = to[e];
long nd = dist[u] + cost[e];
if (nd < dist[v]) {
dist[v] = nd;
if (pos[v] == 0) {
heap[++hsz] = v;
pos[v] = hsz;
siftUp(heap, pos, dist, hsz);
} else {
siftUp(heap, pos, dist, pos[v]);
}
}
}
}
return dist;
}
/* ------------------- Heap utilities ------------------- */
private static void siftUp(int[] heap, int[] pos, long[] dist, int i) {
while (i > 1) {
int p = i >>> 1;
if (dist[heap[p]] <= dist[heap[i]]) break;
swap(heap, pos, p, i);
i = p;
}
}
private static void siftDown(int[] heap, int[] pos, long[] dist, int n, int i) {
while (true) {
int l = i << 1, r = l | 1, s = i;
if (l <= n && dist[heap[l]] < dist[heap[s]]) s = l;
if (r <= n && dist[heap[r]] < dist[heap[s]]) s = r;
if (s == i) break;
swap(heap, pos, i, s);
i = s;
}
}
private static void swap(int[] heap, int[] pos, int i, int j) {
int vi = heap[i], vj = heap[j];
heap[i] = vj; heap[j] = vi;
pos[vi] = j; pos[vj] = i;
}
}
public static void main(String[] args) {
new Task().solve();
}
}