Pagini recente » Cod sursa (job #838243) | Cod sursa (job #580386) | Cod sursa (job #1533416) | Cod sursa (job #12462) | Cod sursa (job #3265575)
#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <climits>
using namespace std;
ifstream f("dijkstra.in");
ofstream g("dijkstra.out");
struct ComparePairs
{
bool operator()(const pair<int, int> &p1, const pair<int, int> &p2)
{
return p1.second > p2.second; // Comparăm după distanță
}
};
int main()
{
int n, m;
f >> n >> m;
vector<vector<pair<int, int>>> adj(n + 1); // Lista de adiacență
vector<int> d(n + 1, INT_MAX); // Distanțele
d[1] = 0; // Distanța de la sursă este 0
vector<int> tata(n + 1, 0); // Părintele fiecărui nod
int x, y, c;
for (int i = 1; i <= m; i++)
{
f >> x >> y >> c;
adj[x].push_back(make_pair(y, c)); // Adăugăm drumul în lista de adiacență
adj[y].push_back(make_pair(x, c)); // Drumul este bidirecțional
}
priority_queue<pair<int, int>, vector<pair<int, int>>, ComparePairs> pq;
pq.push({1, 0}); // Inserăm nodul sursă cu distanța 0 în coada de priorități
vector<bool> viz(n + 1, false); // Vectorul de vizitare
while (!pq.empty())
{
auto u = pq.top();
pq.pop();
int node = u.first;
int dist = u.second;
if (viz[node]) // Dacă deja am vizitat acest nod, îl ignorăm
continue;
viz[node] = true;
for (auto &v : adj[node]) // Parcurgem vecinii
{
int neighbor = v.first;
int weight = v.second;
if (d[node] + weight < d[neighbor]) // Dacă găsim o distanță mai mică
{
d[neighbor] = d[node] + weight;
tata[neighbor] = node; // Actualizăm părintele
pq.push({neighbor, d[neighbor]}); // Reintroducem nodul în coada de priorități
}
}
}
// Scriem distanțele în fișierul de ieșire
for (int i = 2; i <= n; i++) // De la nodul 2 la nodul n
{
if (d[i] == INT_MAX) // Dacă nu s-a putut ajunge la nodul i
g << "0 "; // Nu există cale spre acest nod
else
g << d[i] << " ";
}
return 0;
}