Cod sursa(job #3246028)

Utilizator luca.pislaruAho.Corasike luca.pislaru Data 1 octombrie 2024 15:57:13
Problema Gradina Scor 0
Compilator cpp-64 Status done
Runda Arhiva de probleme Marime 2 kb
#include <fstream>
#include<iomanip>
#include<algorithm>
using namespace std;
int n, i, cnt, cops, j;
double rez1, sum1, sum2;
int st[120002];
struct ura
{
    double x, y;
    int ok;
}v[120002];
bool cmp (ura a, ura b)
{
    if (a.x<b.x)
    {
        return true;
    }
    else
    if (a.x==b.x)
    {
        if (a.y<b.y)
        {
            return true;
        }
    }
    return false;
}
double arie (ura a, ura b, ura c)
{
    double rez;
    rez=a.x * b.y + b.x * c.y + c.x * a.y - b.y * c.x - a.x * c.y - a.y * b.x;
    //a.x*b.y + b.x*c.y + c.x*a.y -b.y*c.x -c.y*a.x - a.y*b.x
    return rez;
}
double convex (ura a, ura b)
{
    sum1=0;
    sum2=0;
    cnt=1;
    for (i=1; i<=n;i++)
    {
        rez1=arie(a, b, v[i]);
        if (rez1<0)
        {
            v[i].ok=1;
        }
        else
        if (rez1>0)
        {
            v[i].ok=2;
        }
        else
        {
            v[i].ok=0;
        }
    }
    st[cnt]=1;
    for (i=2;i<=n;i++)
    {
        if (v[i].ok==1 || v[i].ok==0)
        {
            while (cnt>1 && arie(v[st[cnt-1]], v[st[cnt]], v[i])<0)
            {
                cnt--;
            }
            st[++cnt]=i;
            sum1+=arie(v[st[cnt-1]], v[st[cnt]], v[i]);
        }
    }
    st[cnt]=n;
    cops=cnt;
    for (i=n-1;i>=1;i--)
    {
        if (v[i].ok==2 || v[i].ok==0)
        {
            while (cnt>cops && arie(v[st[cnt-1]], v[st[cnt]], v[i]) <0)
            {
                cnt--;
            }
            st[++cnt]=i;
            sum2+=arie(v[st[cnt-1]], v[st[cnt]], v[i]);
        }
    }
    return abs(sum1-sum2);
}
int main()
{
    ifstream cin ("gradina.in");
    ofstream cout("gradina.out");
    cin>>n;
    double minn=1e5;
    for (i=1;i<=n;i++)
    {
        cin>>v[i].x>>v[i].y;
    }
    for (i=1;i<=n;i++)
    {
        for (j=i+1; j<=n;j++)
        {
            minn=min(minn, convex(v[i], v[j]));
        }
    }
    cout<<minn;
    return 0;
}