#include <cassert>
#include <chrono>
#include <cstring>
#include <fstream>
#include <iostream>
#include <random>
#include <unordered_map>
constexpr char INPUT_FILE_NAME[] = "adunare.in";
constexpr char OUTPUT_FILE_NAME[] = "adunare.out";
class IO_Base
{
protected:
IO_Base() = default;
virtual ~IO_Base() = default;
// https://cplusplus.com/reference/system_error/errc/
const std::unordered_map<int, std::string> FILE_OPEN_ERROR = {
{ENOENT, "File does not exist."},
{EACCES, "Permission denied."},
{EEXIST, "File already exists."},
{EISDIR, "File is a directory."},
{ENOSPC, "No space left on device."},
{EROFS, "Read-only file system."},
{ETXTBSY, "Text file busy."},
{-1, "Unlisted error type."},
{0, "No error."}
};
virtual void Close_IN() = 0;
virtual void Close_OUT() = 0;
virtual void PrintError(const char* const _file_name,
const int _error_num,
const std::string& _error_source) = 0;
};
class IO_LEGACY final : IO_Base
{
// C I/O functions: https://en.cppreference.com/w/c/io
protected:
// The Singleton has a private constructor to prevent direct instantiation.
IO_LEGACY(const char input_file_name[], const char output_file_name[])
{
IN = GetStream(input_file_name, StreamType::READ);
OUT = GetStream(output_file_name, StreamType::WRITE);
}
// The Singleton has a private destructor to prevent deletion.
~IO_LEGACY() override
{
is_instance_destroyed() = true;
IO_LEGACY::Close_IN();
IO_LEGACY::Close_OUT();
}
public:
FILE* IN = nullptr;
FILE* OUT = nullptr;
// Delete copy constructor. Singletons should not be cloneable.
IO_LEGACY(const IO_LEGACY&) = delete;
// Delete move constructor. Singletons should not be movable.
IO_LEGACY(const IO_LEGACY&&) = delete;
// Delete assignment operator. Singletons should not be assignable.
IO_LEGACY& operator=(const IO_LEGACY&) = delete;
/* Singleton pattern. Only one instance of the class can exist.
* Thread safe: Initialization is guaranteed to happen only once.
* A static member object instance is declared. This object is only created
* the first time the function is called. Static local variables are
* guaranteed to be initialized only once, even in multithreaded environments.
* Subsequent calls to GetInstance() simply return the existing instance object.
* Returning reference instead of pointer further discourages attempts to delete.
*/
static IO_LEGACY& GetInstance(const char input_file_name[], const char output_file_name[])
{
static IO_LEGACY io_Instance(input_file_name, output_file_name);
if (is_instance_destroyed())
{
// We check for The Dead Reference Problem.
// Our singleton is designed to only be destroyed at program termination.
fprintf(stderr, "ERROR: Attempt to access destroyed singleton instance.\n");
assert(false);
}
return io_Instance;
}
private:
enum class StreamType
{
READ,
WRITE
};
static bool& is_instance_destroyed()
{
/* This variable is used to check for The Dead Reference Problem
* by enabling the class to check if its singleton has been destroyed.
*/
static bool is_instance_destroyed = false;
return is_instance_destroyed;
}
FILE* GetStream(const char fileName[], const StreamType _streamType)
{
const char* _mode = nullptr;
std::string _error_file_type;
switch (_streamType)
{
case StreamType::READ:
{
_mode = "r";
_error_file_type = "input";
break;
}
case StreamType::WRITE:
{
_mode = "w";
_error_file_type = "output";
break;
}
}
FILE* _file = fopen(fileName, _mode);
if (!_file)
{
PrintError(fileName, errno, "Failed to open " + _error_file_type);
assert(_file);
}
if (std::ferror(_file))
{
PrintError(fileName, errno, ": Error handling stream " + _error_file_type);
assert(false);
}
return _file;
}
static void CloseStream(FILE* file)
{
fclose(file);
}
void Close_IN() override
{
CloseStream(IN);
}
void Close_OUT() override
{
CloseStream(OUT);
}
void PrintError(const char* const _file_name,
const int _error_num,
const std::string& _error_source) override
{
int error_code = -1;
if (FILE_OPEN_ERROR.find(_error_num) != FILE_OPEN_ERROR.end())
{
error_code = _error_num;
}
fprintf(stderr,
"%s file: %s\nERROR: %s\n %s\n",
_error_source.c_str(),
_file_name,
strerror(errno),
FILE_OPEN_ERROR.at(error_code).c_str());
}
};
class IO final : IO_Base
{
// C++ I/O functions: https://en.cppreference.com/w/cpp/io
protected:
// The Singleton has a private constructor to prevent direct instantiation.
IO(const char input_file_name[], const char output_file_name[])
{
GetInputStream(input_file_name);
GetOutputStream(output_file_name);
}
// The Singleton has a private destructor to prevent deletion.
~IO() override
{
is_instance_destroyed() = true;
Close_IN();
Close_OUT();
}
public:
// Don't make these nullptr. They are not pointers.
std::ifstream IN;
std::ofstream OUT;
// Delete copy constructor. Singletons should not be cloneable.
IO(const IO&) = delete;
// Delete move constructor. Singletons should not be movable.
IO(const IO&&) = delete;
// Delete assignment operator. Singletons should not be assignable.
IO& operator=(const IO&) = delete;
/* Singleton pattern. Only one instance of the class can exist.
* Thread safe: Initialization is guaranteed to happen only once.
* A static member object instance is declared. This object is only created
* the first time the function is called. Static local variables are
* guaranteed to be initialized only once, even in multithreaded environments.
* Subsequent calls to GetInstance() simply return the existing instance object.
* Returning reference instead of pointer further discourages attempts to delete.
*/
static IO& GetInstance(const char input_file_name[], const char output_file_name[])
{
static IO io_Instance(input_file_name, output_file_name);
if (is_instance_destroyed())
{
// We check for The Dead Reference Problem.
// Our singleton is designed to only be destroyed at program termination.
std::cerr << "ERROR: Attempt to access destroyed singleton instance." << std::endl;
assert(false);
}
return io_Instance;
}
private:
static bool& is_instance_destroyed()
{
/* This variable is used to check for The Dead Reference Problem
* by enabling the class to check if its singleton has been destroyed.
*/
static bool is_instance_destroyed = false;
return is_instance_destroyed;
}
void GetInputStream(const char _input_file_name[])
{
IN.open(_input_file_name);
if (!IN.is_open()) // Check if the open operation failed
{
if (IN.fail())
{
PrintError(_input_file_name, errno, "Failed to open input");
assert(IN);
}
if (IN.bad())
{
PrintError(_input_file_name, errno, "Fatal I/O error: bad-bit is set in input");
assert(IN);
}
}
}
void GetOutputStream(const char _output_file_name[])
{
OUT.open(_output_file_name);
if (!OUT.is_open()) // Check if the open operation failed
{
if (OUT.fail())
{
PrintError(_output_file_name, errno, "Failed to open output");
assert(OUT);
}
if (OUT.bad())
{
PrintError(_output_file_name, errno, "Fatal I/O error: bad-bit is set in output");
assert(OUT);
}
}
}
void Close_IN() override final
{
IN.close();
}
void Close_OUT() override final
{
OUT.close();
}
void PrintError(const char* const _file_name,
const int _error_num,
const std::string& _error_source) final override
{
int error_code = -1;
if (FILE_OPEN_ERROR.find(_error_num) != FILE_OPEN_ERROR.end())
{
error_code = _error_num;
}
std::cerr << _error_source << " file: " << _file_name << "\n"
<< "ERROR: " << strerror(errno) << "\n"
<< " " << FILE_OPEN_ERROR.at(error_code) << std::endl;
}
};
#ifdef PROFILING
class Profiling
{
private:
std::chrono::time_point<std::chrono::system_clock> time_begin, time_end;
std::chrono::duration<double, std::nano> duration_nano = std::chrono::nanoseconds(0);
const char* functionName;
const char* comment;
public:
explicit Profiling(const char* _functionName, const char* _comment)
: functionName(_functionName), comment(_comment)
{
Begin_Profiling();
}
void Begin_Profiling()
{
time_begin = std::chrono::high_resolution_clock::now();
}
void End_Profiling()
{
time_end = std::chrono::high_resolution_clock::now();
/* Getting number of nanoseconds as a double. */
duration_nano = std::chrono::duration_cast<std::chrono::nanoseconds>(time_end - time_begin);
Show_Profiling_Results();
}
void Show_Profiling_Results() const
{
std::cout << functionName << " : "
<< duration_nano.count() / 1000000 << "ms | "
<< duration_nano.count() / 1000 << "\xE6s | "
<< duration_nano.count() << "ns\n"
<< " " << comment << "\n";
}
};
#endif
void Add()
{
IO& io = IO::GetInstance(INPUT_FILE_NAME, OUTPUT_FILE_NAME);
int a, b;
io.IN >> a >> b;
io.OUT << a + b << std::endl;
}
void Add_Legacy()
{
IO_LEGACY& io = IO_LEGACY::GetInstance(INPUT_FILE_NAME, OUTPUT_FILE_NAME);
int a, b;
fscanf(io.IN, "%d %d", &a, &b);
fprintf(io.OUT, "%d\n", a + b);
}
bool randomBoolean()
{
static std::default_random_engine generator(std::random_device{}());
// With p = 0.5 you get equal probability for true and false
static std::bernoulli_distribution distribution(0.5);
return distribution(generator);
}
int main()
{
#ifdef PROFILING
Profiling profiling = Profiling(__FUNCTION__, "Add two numbers from a file.");
#endif
if (randomBoolean())
Add();
else
Add_Legacy();
#ifdef PROFILING
profiling.End_Profiling();
#endif
return 0;
}