#include <iostream>
#define FIN "euclid3.in"
#define FOUT "euclid3.out"
/*
Identitatea lui Bezout
ax + by = d (unde d = gcd(a,b))
gcd(a,b) = gcd(b, a mod b)
bx0 + (a mod b)y0 = d
trebuie sa aflam pe x si y astfel incat
ax + by = d
fie un a = qb + r
formam urmatorul sistem de ecuatii:
//ax + by = d
| (qb + r)x + by = d
| bx0 + ry0 = d
le formulam in functie de b si r
|(qx + y)b + xr = d
| b x0 + ry0 = d
q = a/b
=> x = y0 si
y = x0 - qy0
void euclid(int a, int b) {
if(b == 0) return a;
else return euclid(b, a % b)
}
*/
void euclid_exended(int a, int b, int *d, int *x, int *y) {
if( b == 0 ) {
*d = a;
*x = 1;
*y = 0;
} else {
int x1, y1;
euclid_exended(b, a % b, d, &x1, &y1);
*x = y1;
*y = x1 - (a/b)*y1;
}
}
int main(int argc, char const *argv[]) {
int x, y, d, a, b, c, T;
freopen(FIN, "r", stdin);
freopen(FOUT, "w", stdout);
scanf("%d",&T);
while(T--) {
scanf("%d %d %d",&a,&b,&c);
int d, x, y;
euclid_exended(a, b, &d, &x, &y);
if(c%d!=0) printf("%d %d\n", 0, 0);
else
printf("%d %d\n", (c/d*x), (c/d)*y);
}
return 0;
}