Pagini recente » Cod sursa (job #3210044) | Cod sursa (job #706664) | Cod sursa (job #755175) | Cod sursa (job #3147714) | Cod sursa (job #3179439)
#include <fstream>
#include <vector>
#include <queue>
using namespace std;
const int NMAX = 100;
vector<int> graf[1 + 2 * NMAX + 1];
int capacitate[1 + 2 * NMAX + 1][1 + 2 * NMAX + 1];
int cost[1 + 2 * NMAX + 1][1 + 2 * NMAX + 1];
queue<int> q;
bool inCoada[1 + 2 * NMAX + 1];
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
int distInitial[1 + 2 * NMAX + 1];
int distDijkstra[1 + 2 * NMAX + 1];
int distReala[1 + 2 * NMAX + 1];
int tata[1 + 2 * NMAX + 1];
void bellmanFord(int n)
{
for (int i = 0; i <= 2 * n + 1; ++i)
distInitial[i] = 1e9;
distInitial[0] = 0;
q.emplace(0);
inCoada[0] = true;
while (!q.empty())
{
int nod = q.front();
q.pop();
inCoada[nod] = false;
for (int i = 0; i < graf[nod].size(); ++i)
{
int vecin = graf[nod][i];
if (capacitate[nod][vecin] > 0 && distInitial[nod] + cost[nod][vecin] < distInitial[vecin])
{
distInitial[vecin] = distInitial[nod] + cost[nod][vecin];
if (!inCoada[vecin])
{
q.emplace(vecin);
inCoada[vecin] = true;
}
}
}
}
}
bool dijkstra(int n)
{
for (int i = 0; i <= 2 * n + 1; ++i)
tata[i] = -1;
for (int i = 0; i <= 2 * n + 1; ++i)
distDijkstra[i] = 1e9;
distDijkstra[0] = 0;
distReala[0] = 0;
tata[0] = 0;
pq.emplace(0, 0);
while (!pq.empty())
{
int nod = pq.top().second;
int distNod = pq.top().first;
pq.pop();
if (distNod > distDijkstra[nod])
continue;
for (int i = 0; i < graf[nod].size(); ++i)
{
int vecin = graf[nod][i];
if (capacitate[nod][vecin] > 0 &&
distNod + distInitial[nod] + cost[nod][vecin] - distInitial[vecin] < distDijkstra[vecin])
{
distDijkstra[vecin] = distNod + distInitial[nod] + cost[nod][vecin] - distInitial[vecin];
distReala[vecin] = distReala[nod] + cost[nod][vecin];
tata[vecin] = nod;
if (vecin != 2 * n + 1)
pq.emplace(distDijkstra[vecin], vecin);
}
}
}
for (int i = 0; i <= 2 * n + 1; ++i)
distInitial[i] = distReala[i];
return distDijkstra[2 * n + 1] < 1e9;
}
int main()
{
ifstream in("cc.in");
ofstream out("cc.out");
ios_base::sync_with_stdio(false);
in.tie(nullptr);
out.tie(nullptr);
int n;
in >> n;
for (int i = 1; i <= n; ++i)
{
for (int j = 1; j <= n; ++j)
{
in >> cost[i][n + j];
cost[n + j][i] = -cost[i][n + j];
graf[i].emplace_back(n + j);
graf[n + j].emplace_back(i);
capacitate[i][n + j] = 1;
}
}
for (int i = 1; i <= n; ++i)
{
graf[0].emplace_back(i);
graf[i].emplace_back(0);
capacitate[0][i] = 1;
}
for (int i = n + 1; i <= 2 * n; ++i)
{
graf[i].emplace_back(2 * n + 1);
graf[2 * n + 1].emplace_back(i);
capacitate[i][2 * n + 1] = 1;
}
bellmanFord(n);
int sol = 0;
while (dijkstra(n))
{
int capMinima = 1e9;
for (int nodCrt = 2 * n + 1; nodCrt != tata[nodCrt]; nodCrt = tata[nodCrt])
capMinima = min(capMinima, capacitate[tata[nodCrt]][nodCrt]);
for (int nodCrt = 2 * n + 1; nodCrt != tata[nodCrt]; nodCrt = tata[nodCrt])
{
capacitate[tata[nodCrt]][nodCrt] -= capMinima;
capacitate[nodCrt][tata[nodCrt]] += capMinima;
}
sol += distReala[2 * n + 1] * capMinima;
}
out << sol << '\n';
in.close();
out.close();
return 0;
}