Pagini recente » Cod sursa (job #879198) | Cod sursa (job #2127985) | Cod sursa (job #2160628) | Cod sursa (job #1480707) | Cod sursa (job #3162528)
#include <iostream>
#include <fstream>
#include <cmath>
#define MOD 9973
/*Divizorii unui număr natural n reprezintă mulţimea de numere naturale, mai mici sau egale cu n,
cu proprietatea că divid pe n. Să se determine pentru t numere naturale cardinalul acestei mulţimi
şi restul împărţirii sumei elementelor mulţimii la 9973.*/
std::ifstream fin ("ssnd.in"); //input file
std::ofstream fout ("ssnd.out"); //output file
unsigned long long pr(long long a, long long b) { //functie de exponentiere
long long thing = 1;
while (b>0){
if (b&1) {thing=thing*a;}
a=a*a;
b >>=1;
}
return thing;
}
void gSoE(bool* numlist, unsigned long long n=1) { //generate the Sieve of Erasthothenes on a boolean array of length n
for (unsigned long long i=2;2*i<=n;i++)
{
numlist[2*i]=1;
}
for (unsigned long long i=3;i*i<=n;i+=2)
{
if (!numlist[i]) {
for (unsigned long long j=(i<<1);j<=n;j+=i)
{
numlist[j]=1;
}
}
}
}
unsigned short expo(long long a, long long p) { //gaseste puterea unui numar prim din descompunerea in factori (practic logaritm cu baza p de a)
unsigned short c=0;
while (a%p==0) {
a/=p;c++;
}
return c;
}
int main(){
unsigned short t;
fin >> t; //get number of iterations
for (int i=0;i<t;i++)
{
unsigned long long n; //initialize current number
fin >> n; //read current number from file
bool primeList[n+1]{}; //Create empty boolean array of length n+1
gSoE(primeList, n+1); //Imprint Sieve of Erasthothenes on said boolean array
unsigned long long gamma=1,sigma=1; //initialize number of divisors and sum of divisors
if (n%2==0) {gamma*=(expo(n, 2)+1);sigma*=(pr(2, expo(n, 2)+1)-1)%MOD; while(n%2){n/=2;} }
for (unsigned long long j=3;j*j<=n;j+=2)
{
if (!primeList[j] && n%j==0) {
gamma*=(expo(n, j)+1); //add divisors implied by prime factor
sigma*=((pr(j, expo(n, j)+1)-1)/(j-1))%MOD; //sum (mod 9973) divisors implied by prime factor
while (n%j){n/=j;} //remove prime factor from number
}
}
if (!primeList[n]) {gamma*=2;sigma*=(n*n-1)/(n-1)%MOD;}
fout << gamma << " " << sigma%MOD << std::endl; //write number of divisors and sum of divisors mod 9973 of currrent number
}
return 0;
}