#include <bits/stdc++.h>
#define MAX 131072
using namespace std;
const int NMAX = 20300;
struct obj {
int node;
int capacity, flow, idx;
bool dir;
};
struct obj_1 {
int node, idx;
};
int N1, N2, M, S, D, ansFlow;
bool wasSeen[NMAX];
obj_1 dad[NMAX];
vector <obj> edges[NMAX];
// flow.first = capacity
// flow.second = flow
void read(){
scanf("%d%d%d", &N1, &N2, &M);
int x, y;
S = 0;
D = N1 + N2 + 1;
for(int i = 1; i <= M; i++){
scanf("%d%d", &x, &y);
int xSize = edges[x].size();
int ySize = edges[N1 + y].size();
edges[x].push_back({N1 + y, 1, 0, ySize, true});
edges[N1 + y].push_back({x, 0, 0, xSize, false});
}
for(int node = 1; node <= N1; node++){
int xSize = edges[S].size();
int ySize = edges[node].size();
edges[S].push_back({node, 1, 0, ySize, true});
edges[node].push_back({S, 0, 0, xSize, false});
}
for(int node = N1 + 1; node <= N1 + N2; node++){
int xSize = edges[D].size();
int ySize = edges[node].size();
edges[D].push_back({node, 0, 0, ySize, false});
edges[node].push_back({D, 1, 0, xSize, true});
}
}
// rezolvare cerinta a
// aplic algoritmul de flux, pornesc un BFS din nodul 1 si incerc sa ajung in nodul N pe muchiile care inca nu
// si-au atins capacitatea maxima, iar pentru fiecare nod retin nodul de unde am venit
// pentru toti vecinii lui N, calculez fluxul cu care pot sa ajung intr-un vecin de a lui, uitandu-ma la tatii acestuia
// insumez toate fluxurile gasite si obtin rezultatul
void printMinimumCut(int node){
for(int i = 0; i <= D; i++)
wasSeen[i] = false;
vector <pair <int, int> > cutEdges;
queue <int> Q;
Q.push(node);
wasSeen[node] = true;
while(!Q.empty()){
node = Q.front();
Q.pop();
for(auto it : edges[node]){
if(!it.dir)
continue;
if(node != S && it.node != D && it.capacity - it.flow == 0){
cutEdges.push_back(make_pair(node, it.node - N1));
continue;
}
if(!wasSeen[it.node]){
wasSeen[it.node] = true;
Q.push(it.node);
}
}
}
for(auto it : cutEdges)
printf("%d %d\n", it.first, it.second);
cutEdges.clear();
}
bool generateFlow(int node){
for(int i = 0; i <= D; i++){
wasSeen[i] = false;
dad[i] = {0, 0};
}
queue <int> Q;
Q.push(node);
wasSeen[node] = true;
while(!Q.empty()){
node = Q.front();
Q.pop();
for(int i = 0; i < edges[node].size(); i++){
auto it = edges[node][i];
if(!wasSeen[it.node] && it.capacity - it.flow > 0){
wasSeen[it.node] = true;
dad[it.node] = {node, i};
Q.push(it.node);
}
}
}
if(!dad[D].node)
return false;
node = D;
for(int ci = 0; ci < edges[node].size(); ci++){
auto it = edges[node][ci];
int MinFlow = edges[it.node][it.idx].capacity - edges[it.node][it.idx].flow;
int PosFlow = 0;
if(MinFlow > 0){
for(int j = it.node; j != 0; j = dad[j].node){
PosFlow = edges[dad[j].node][dad[j].idx].capacity - edges[dad[j].node][dad[j].idx].flow;
if(PosFlow < MinFlow)
MinFlow = PosFlow;
}
if(!MinFlow)
continue;
edges[it.node][it.idx].flow += MinFlow;
edges[node][ci].flow -= MinFlow;
for(int j = it.node; j != 0; j = dad[j].node){
int kidx = edges[dad[j].node][dad[j].idx].idx;
edges[dad[j].node][dad[j].idx].flow += MinFlow;
edges[j][kidx].flow -= MinFlow;
}
ansFlow += MinFlow;
}
}
return true;
}
int main() {
freopen("cuplaj.in", "r", stdin);
freopen("cuplaj.out", "w", stdout);
read();
bool repeat = true;
while(repeat)
repeat = generateFlow(0);
printf("%d\n", ansFlow);
//printMinimumCut(0);
return 0;
}