Pagini recente » Cod sursa (job #2347445) | Cod sursa (job #2674010) | Cod sursa (job #797124) | Cod sursa (job #1946117) | Cod sursa (job #2954020)
#include <bits/stdc++.h>
using namespace std;
ifstream f("hotel.in");
ofstream g("hotel.out");
const int NMAX=100005;
int n,Q,op,add,start,finish,val;
struct
{
int best,max_left,max_right,lazy=1;///best represents the longest sequence of ones
///max_left represents the longest prefix of ones
///max_right represents the longest suffix of ones
///lazy represents the value on our nodes,hence we start with all elements to 1 and invert the logic of the operations
} Tree[4*NMAX];
void update(int node,int left,int right)
{
///first we propagate
if(Tree[node].lazy==-1)///we set the whole segment to 0
{
Tree[node].lazy=0;
Tree[2*node].lazy=-1;
Tree[2*node+1].lazy=-1;
}
else if(Tree[node].lazy==1)///we set the whole segment to 1
{
Tree[2*node].lazy=1;
Tree[2*node+1].lazy=1;
}
if(val==-1)
Tree[node].lazy=0;
if(start<=left && right<=finish)
{
Tree[node].lazy=val;
return;
}
int middle=(left+right)/2;
if(start<=middle)
update(2*node,left,middle);///update left son
if(middle<finish)
update(2*node+1,middle+1,right);///update right son
}
void query(int node,int left,int right)
{
///first we propagate
if(Tree[node].lazy==1)///we "set" the whole segment to 1
{
Tree[node].best=right-left+1;
Tree[node].max_left=right-left+1;
Tree[node].max_right=right-left+1;
return;
}
else if(Tree[node].lazy==-1)///we "set" the whole segment to 0
{
Tree[node].best=0;
Tree[node].max_left=0;
Tree[node].max_right=0;
return;
}
if(left==right)
return;
int middle=(left+right)/2;
query(2*node,left,middle);///query left son
query(2*node+1,middle+1,right);///query right son
Tree[node].max_left=Tree[2*node].max_left;
if(Tree[2*node].max_left==middle-left+1)///the max_left for the left son is the full segment
Tree[node].max_left+=Tree[2*node+1].max_left;///so we can add to it the max_left for the right son
Tree[node].max_right=Tree[2*node+1].max_right;
if(Tree[2*node+1].max_right==right-(middle+1)+1)///the max_right for the right son is the full segment
Tree[node].max_right+=Tree[2*node].max_right;///so we can add to it the max_right for the left son
Tree[node].best=max(max(Tree[2*node].best,Tree[2*node+1].best),Tree[2*node].max_right+Tree[2*node+1].max_left);///the new best is either the best on the left son, the best on the right son
///or a combination of max_right of the left son and max_left of the right son
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
f>>n>>Q;
for(int q=1; q<=Q; q++)
{
f>>op;
if(op==1)
{
f>>start>>add;
finish=start+add-1;
val=-1;
update(1,1,n);
}
else if(op==2)
{
f>>start>>add;
finish=start+add-1;
val=1;
update(1,1,n);
}
else
{
query(1,1,n);
g<<Tree[1].best<<'\n';
}
}
return 0;
}