Pagini recente » Pictura | Monitorul de evaluare | Fotbal3 | Cod sursa (job #3040136) | Cod sursa (job #2932020)
#include <fstream>
#include <cmath>
#include <iomanip>
#include <vector>
#include <queue>
using namespace std;
ifstream fin("adapost.in");
ofstream fout("adapost.out");
const double eps = 1e-6, inf = 1000000;
const int maxN = 805;
int n, m, sursa, dest;
double fake_dist[maxN], real_dist[maxN], dist[maxN], total_cost;
int prv[maxN], max_flow;
bool used[maxN];
struct muchie {
int nxt, flux, cap;
double cost;
}lm[325005];
vector <int> G[maxN];
struct haha4heap {
int nod;
double cost;
bool operator < (const haha4heap &other) const {
return cost > other.cost;
}
};
priority_queue <haha4heap> heap;
queue <int> q;
struct point {
double x, y;
}v1[405], v2[405];
double get_dist(int a, int b)
{
double deltax = v1[a].x - v2[b].x, deltay = v1[a].y - v2[b].y;
double d = sqrt(deltax * deltax + deltay * deltay);
return d;
}
void bellman_ford()
{
for(int i = sursa; i <= dest; i++)
dist[i] = inf;
dist[sursa] = 0;
q.push(sursa);
while(!q.empty())
{
int curr = q.front();
q.pop();
for(int ind : G[curr])
{
muchie aux = lm[ind];
if(aux.cap == 0 || dist[curr] + aux.cost >= dist[aux.nxt])
continue;
dist[aux.nxt] = dist[curr] + aux.cost;
q.push(aux.nxt);
}
}
}
bool dijkstra()
{
for(int i = sursa; i <= dest; i++)
{
fake_dist[i] = inf;
real_dist[i] = dist[i];
used[i] = 0;
}
while(!heap.empty())
heap.pop();
fake_dist[sursa] = 0;
dist[sursa] = 0;
heap.push({sursa, 0});
while(!heap.empty())
{
int curr = heap.top().nod;
heap.pop();
if(used[curr])
continue;
used[curr] = 1;
for(int ind : G[curr])
{
muchie aux = lm[ind];
if(aux.flux < aux.cap && fake_dist[curr] + aux.cost + real_dist[curr] - real_dist[aux.nxt] < fake_dist[aux.nxt])
{
prv[aux.nxt] = ind;
fake_dist[aux.nxt] = fake_dist[curr] + aux.cost + real_dist[curr] - real_dist[aux.nxt];
dist[aux.nxt] = dist[curr] + aux.cost;
heap.push({aux.nxt, fake_dist[aux.nxt]});
}
}
}
if(fake_dist[dest] == inf)
return 0;
return 1;
}
void compute_flux(double val)
{
for(int i = 0; i < n * n + 2 * n; i++)
{
lm[2 * i].flux = 0;
lm[2 * i + 1].flux = 0;
if(i < n * n)
{
if(lm[2 * i].cost <= val)
lm[2 * i].cap = 1;
else
lm[2 * i].cap = 0;
}
}
max_flow = 0;
total_cost = 0;
bellman_ford();
while(dijkstra())
{
int min_flow = inf;
for(int x = dest; x != sursa; x = lm[prv[x] ^ 1].nxt)
min_flow = min(min_flow, lm[prv[x]].cap - lm[prv[x]].flux);
for(int x = dest; x != sursa; x = lm[prv[x] ^ 1].nxt)
{
lm[prv[x]].flux += min_flow;
lm[prv[x] ^ 1].flux -= min_flow;
}
total_cost +=1.0 * min_flow * dist[dest];
max_flow += min_flow;
}
}
int main()
{
fin >> n;
for(int i = 1; i <= n; i++)
fin >> v1[i].x >> v1[i].y;
for(int i = 1; i <= n; i++)
fin >> v2[i].x >> v2[i].y;
sursa = 0;
dest = 2 * n + 1;
int k = 0;
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
double cst = get_dist(i, j);
lm[2 * k] = {n + j, 0, 1, cst};
lm[2 * k + 1] = {i, 0, 0, -cst};
G[i].push_back(2 * k);
G[n + j].push_back(2 * k + 1);
k++;
}
}
for(int i = 1; i <= n; i++)
{
lm[2 * k] = {i, 0, 1, 0};
lm[2 * k + 1] = {sursa, 0, 0, 0};
G[sursa].push_back(2 * k);
G[i].push_back(2 * k + 1);
k++;
}
for(int i = 1; i <= n; i++)
{
lm[2 * k] = {dest, 0, 1, 0};
lm[2 * k + 1] = {n + i, 0, 0, 0};
G[n + i].push_back(2 * k);
G[dest].push_back(2 * k + 1);
k++;
}
double st = 0, dr = 1500, ans = 1500;
while(st + eps <= dr)
{
double med = (st + dr) / 2;
compute_flux(med);
if(max_flow == n)
{
ans = med;
dr = med;
}
else
st = med;
}
compute_flux(ans);
fout << setprecision(6) << fixed << ans << ' ' << total_cost << '\n';
return 0;
}