#include <fstream>
#include <iostream>
#include <vector>
#include <stack>
#include <queue>
#include <deque>
#include <algorithm>
#include <functional>
#include <ctime>
#include <cassert>
using namespace std;
vector<vector<int>> SCC;
const int infty = 2*1e9;
const int max_matrix = 31;
int DEBUG;
using Adj_Matrix = array<array<int, max_matrix>, max_matrix>;
// Elements of the adjacency list we use.
// When edge(v, d) is in adj[u], v represents the outvertex and d the weight of the edge from u to v.
struct Edge{
int vertex;
int weight;
Edge(int v, int w){
vertex = v, weight = w;
}
};
struct SymmetricEdge{
int from;
int to;
int id;
int weight;
SymmetricEdge(int from, int to, int id, int weight=1): from{from}, to{to}, id{id}, weight{weight} {}
};
// Weighted graph class for the purpose of demonstrating graph algorithms
class Graph{
private:
int size;
vector<vector<Edge>> adj;
vector<vector<SymmetricEdge>> sym_adj;
void dfs_helper(int v, vector<bool>& vis, function<void(int)>, function<void(int)>);
void bfs_helper(vector<bool>& vis, queue<int>& q);
public:
Graph(int sz) :size {sz}, adj {vector<vector<Edge>>(sz + 1)}, sym_adj {vector<vector<SymmetricEdge>>(sz + 1)} {}
void add_edge(int v1, int v2, int weight);
void add_symmetric_edge(int v1, int v2, int id, int weight);
void print();
void dfs(function<void(int)>, function<void(int)>);
void bfs(int start_vertex);
Graph reverse_graph();
void strongly_connected_components();
vector<int> minimal_spanning_tree(int source);
vector<int> shortest_paths_dijkstra(int source);
vector<int> shortest_paths_bellman_ford(int source);
int** all_shortest_paths(int** adj_matrix);
vector<int> eulerian_cycle(int number_edges);
void euler_helper(int node, vector<int>& vis, vector<int>& cycle);
};
//Basic utilities, add weighted edge, print to stdout etc.
void Graph::add_edge(int v1, int v2, int weight=1){
adj[v1].push_back(Edge(v2, weight));
}
void Graph::add_symmetric_edge(int from, int to, int id, int weight=1){
SymmetricEdge e1(from, to, id, weight);
SymmetricEdge e2(to, from, id, weight);
sym_adj[from].push_back(e1);
sym_adj[to].push_back(e2);
}
void Graph::print(){
for(int i=1; i <= size; ++i){
cout << i << ":";
for(auto edge: adj[i])
printf("(%d, %d) ", edge.vertex, edge.weight);
cout << "\n";
}
}
// The recursive dfs traversal algorithm.
// Iterates through the vector of ordered vertices and calls dfs whenever it finds a new component.
// We initialize a vector vis of visits locally and pass it by reference to prevent useless copying.
void Graph::dfs(function<void(int)> discovery_action = [](int){}, function<void(int)> finish_action = [](int){}){
vector<bool> vis(size);
for(int v = 1; v <= size; ++v)
if(!vis[v])
dfs_helper(v, vis, discovery_action, finish_action);
}
// Basic dfs recursive function. Supports passing functional callbacks to execute at vertex discovery or finish.
void Graph::dfs_helper(int v, vector<bool>& vis, function<void(int v)> discovery_action = [](int){}, function<void(int v)> finish_action = [](int){}){
vis[v] = 1;
discovery_action(v);
for(auto e: adj[v])
if(!vis[e.vertex])
dfs_helper(e.vertex, vis, discovery_action, finish_action);
finish_action(v);
}
// Bfs traversal algorithm.
// As before we maintain a visits vector and a queue of the next vertices to visit.
void Graph::bfs(int start_vertex){
vector<bool> vis(size);
queue<int> q;
q.push(start_vertex);
vis[start_vertex] = 1;
bfs_helper(vis, q);
}
void Graph::bfs_helper(vector<bool>& vis, queue<int>& q){
int v = q.front(); //starting vertex
for(auto e: adj[v]) //extend queue
if(!vis[e.vertex]){
q.push(e.vertex);
vis[e.vertex] = 1;
}
q.pop();
if(!q.empty())
bfs_helper(vis, q);
}
// Strongly connected components.
// Uses slightly modified DFS, that builds up a vector of the vertices in reverse order of their finishing times.
// Required by Kosaraju's algorithm for SCC. This ordering satisfies the property that the first occurences
// of all SCCs form a topologicaly sorted subsequence.
void Graph::strongly_connected_components(){
// Because DFS takes functions as parameters we do not have to implement it again
vector<int> order_for_scc;
dfs([](int){}, [&order_for_scc](int v){order_for_scc.push_back(v);});
Graph g_reversed = this->reverse_graph();
vector<bool> vis(size);
for(auto it = order_for_scc.rbegin(); it != order_for_scc.rend(); ++it){
int v = *it;
if(!vis[v]){
// we DFS traverse again. Each call of dfs fills out a SCC
SCC.push_back(vector<int> {});
g_reversed.dfs_helper(v, vis, [](int v){SCC.back().push_back(v);});
}
}
}
// Reverse a graph
Graph Graph::reverse_graph(){
Graph rg(size);
for(int v = 1; v <= size; ++v)
for(auto e: adj[v])
rg.add_edge(e.vertex, v);
return rg;
}
// Dijkstra's algorithm for shortest paths from a source
// STL priority queues do not support easily deleting an element, so we skip deleting the elements.
// Because pq is pushed to at most E times, where E is the number of edges, pq.size is always <= E.
// The number of operations is thus O(E * log E) which equals O(E * log V) as E < V^2
vector<int> Graph::shortest_paths_dijkstra(int source){
vector<bool> vis(size + 1);
vector<int> distance(size + 1);
for(auto& d: distance)
d = infty;
distance[source] = 0;
// The priority queue holds edges to the undiscovered parts of the graph.
auto cmp = [&](pair<int, int> x, pair<int, int> y){ return x.second > y.second; };
priority_queue <pair<int,int>, vector<pair<int,int>>, decltype(cmp)> pq(cmp);
pq.push(make_pair(source, 0));
while(!pq.empty()){
int v = pq.top().first;
pq.pop();
if(vis[v])
continue;
vis[v] = 1;
for(auto edge: adj[v])
if(distance[edge.vertex] > distance[v] + edge.weight){
distance[edge.vertex] = distance[v] + edge.weight;
pq.push(make_pair(edge.vertex, distance[edge.vertex]));
}
}
return distance;
}
// Computes all distances from source to vertices in the graph.
// If it detects a negative cycle, the algorithm returns an empty vector of distances.
vector<int> Graph::shortest_paths_bellman_ford(int source){
vector<bool> vis(size + 1);
vector<int> distance(size + 1);
for(auto& d: distance)
d = infty;
distance[source] = 0;
for(int i = 1; i <= size - 1; ++i){// repeat |V| - 1 times
// Body of the for traverses all edges once and relaxes the distance vector.
for(int v = 1; v <= size; ++v)
for(auto edge: adj[v])
if(distance[edge.vertex] > distance[v] + edge.weight)
distance[edge.vertex] = distance[v] + edge.weight;
}
// If executing the body of the previous for once again would decrease distances, then a negative cycle exists.
for(int v = 1; v <= size; ++v)
for(auto edge: adj[v])
if(distance[edge.vertex] > distance[v] + edge.weight)
distance = {};
return distance;
}
Adj_Matrix all_shortest_paths(int n, Adj_Matrix M){
int dp[max_matrix][max_matrix][max_matrix];
Adj_Matrix ans;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
dp[i][j][0] = M[i][j];
for(int k = 1; k <= n; ++k)
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
dp[i][j][k] = min(dp[i][j][k - 1], dp[i][k][k - 1] + dp[k][j][k - 1]);
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
ans[i][j] = dp[i][j][n];
return ans;
}
// Primm algorithm for minimal spanning tree. The code here is just dijkstra with a slightly different condition.
vector<int> Graph::minimal_spanning_tree(int source=1){
vector<bool> vis(size + 1);
vector<int> key(size + 1);
vector<int> parent(size + 1);
int v, d;
int total = 0;
for(int i = 1; i <= size; ++i)
key[i] = infty;
key[source] = 0;
// The priority queue holds edges to the undiscovered parts of the graph, keyed by distance to the discovered part
auto cmp = [&](pair<int, int> x, pair<int, int> y){ return x.second > y.second; };
priority_queue <pair<int,int>, vector<pair<int,int>>, decltype(cmp)> pq(cmp);
pq.push(make_pair(source, 0));
while(!pq.empty()){
v = pq.top().first;
d = pq.top().second;
pq.pop();
if(vis[v])
continue;
vis[v] = 1;
total += d;
for(auto edge: adj[v])
if(key[edge.vertex] > edge.weight && !vis[edge.vertex]){
key[edge.vertex] = edge.weight;
parent[edge.vertex] = v;
pq.push(make_pair(edge.vertex, key[edge.vertex]));
}
}
parent[0] = total;
return parent;
}
Graph random_graph(int size){
Graph g = Graph(size);
for(int i = 1; i <= size; ++i)
for(int j = 1; j <= size; ++j){
if(rand() % 3 == 1)
g.add_edge(i, j, rand() % 10 + 1);
}
return g;
}
ifstream fin;
ofstream fout;
int ecount = 0;
int M;
vector<int> Graph::eulerian_cycle(int m){
M = m;
// Return {-1} for non eulerian graphs.
for(register int i = 1; i <= size; ++i)
if(sym_adj[i].size() & 1){
fout << -1;
return vector<int> {-1};
}
vector<int> cycle;
vector<int> vis(m + 1);
euler_helper(1, vis, cycle);
return cycle;
}
void Graph::euler_helper(int node, vector<int>& vis, vector<int>& cycle){
while(!sym_adj[node].empty()){
SymmetricEdge edge = sym_adj[node].back();
sym_adj[node].pop_back();
if(!vis[edge.id]){
vis[edge.id] = 1;
euler_helper(edge.to, vis, cycle);
}
}
cycle.push_back(node);
if(++ecount <= M)
fout << node << " ";
}
int main(){
fin.open("ciclueuler.in");
fout.open("ciclueuler.out");
int n, m, u, v;
fin >> n >> m;
Graph g(n);
for(register int i=1; i <= m; ++i){
fin >> u >> v;
g.add_symmetric_edge(u, v, i);
}
vector<int> cycle;
cycle = g.eulerian_cycle(m);
}