Pagini recente » Cod sursa (job #1057559) | Cod sursa (job #496337) | Cod sursa (job #2391859) | Cod sursa (job #2502244) | Cod sursa (job #2905550)
#include <fstream>
#include <iostream>
#include <vector>
#include <queue>
#include <deque>
#include <algorithm>
#include <functional>
using namespace std;
vector<vector<int>> SCC;
const int infty = 2*1e9;
// Elements of the adjacency list we use.
// When edge(v, d) is in adj[u], v represents the outvertex and d the weight of the edge from u to v.
struct Edge{
int vertex;
int weight;
Edge(int v, int w){
vertex = v, weight = w;
}
};
// This is a weighted graph class for the purpose of demonstrating graph algorithms. Weights can be left unspecified
// since they initialize to 1 by default.
class Graph{
private:
int size;
vector<vector<Edge>> adj;
void dfs_helper(int v, vector<bool>& vis, function<void(int)>, function<void(int)>);
void bfs_helper(vector<bool>& vis, queue<int>& q);
public:
Graph(int sz) :size {sz}, adj {vector<vector<Edge>>(sz + 1)} {}
void add_edge(int v1, int v2, int weight);
void print();
void dfs(function<void(int)>, function<void(int)>);
void bfs(int start_vertex);
Graph reverse_graph();
void strongly_connected_components();
vector<int> shortest_paths_dijkstra(int source);
};
//Basic utilities, add weighted edge, print to stdout etc.
void Graph::add_edge(int v1, int v2, int weight=1){
adj[v1].push_back(Edge(v2, weight));
}
void Graph::print(){
for(int i=1; i <= size; ++i){
cout << i << ":";
for(auto edge: adj[i])
cout << " " << edge.vertex;
cout << "\n";
}
}
// The recursive dfs traversal algorithm.
// Iterates through the vector of ordered vertices and calls dfs whenever it finds a new component.
// We initialize a vector vis of visits locally and pass it by reference to prevent useless copying.
void Graph::dfs(function<void(int)> discovery_action = [](int){}, function<void(int)> finish_action = [](int){}){
vector<bool> vis(size);
for(int v = 1; v <= size; ++v)
if(!vis[v])
dfs_helper(v, vis, discovery_action, finish_action);
}
// Basic dfs recursive function. Supports passing functional arguments to execute at vertex discovery or finish.
void Graph::dfs_helper(int v, vector<bool>& vis, function<void(int v)> discovery_action = [](int){}, function<void(int v)> finish_action = [](int){}){
vis[v] = 1;
discovery_action(v);
for(auto e: adj[v])
if(!vis[e.vertex])
dfs_helper(e.vertex, vis, discovery_action, finish_action);
finish_action(v);
}
// Bfs traversal algorithm.
// As before we maintain a visits vector and a queue of the next vertices to visit.
void Graph::bfs(int start_vertex){
vector<bool> vis(size);
queue<int> q;
q.push(start_vertex);
vis[start_vertex] = 1;
bfs_helper(vis, q);
}
void Graph::bfs_helper(vector<bool>& vis, queue<int>& q){
int v = q.front(); //starting vertex
for(auto e: adj[v]) //extend queue
if(!vis[e.vertex]){
q.push(e.vertex);
vis[e.vertex] = 1;
}
q.pop();
if(!q.empty())
bfs_helper(vis, q);
}
// Strongly connected components.
// Uses slightly modified DFS, that builds up a vector of the vertices in reverse order of their finishing times.
// Required by Kosaraju's algorithm for SCC. This ordering satisfies the property that the first occurences
// of all SCCs form a topologicaly sorted subsequence.
void Graph::strongly_connected_components(){
// Because DFS takes functions as parameters we do not have to implement it again
vector<int> order_for_scc;
dfs([](int){}, [&order_for_scc](int v){order_for_scc.push_back(v);});
Graph g_reversed = this->reverse_graph();
vector<bool> vis(size);
for(auto it = order_for_scc.rbegin(); it != order_for_scc.rend(); ++it){
int v = *it;
if(!vis[v]){
// we DFS traverse again. Each call of dfs fills out a SCC
SCC.push_back(vector<int> {});
g_reversed.dfs_helper(v, vis, [](int v){SCC.back().push_back(v);});
}
}
}
// Reverse a graph
Graph Graph::reverse_graph(){
Graph rg(size);
for(int v = 1; v <= size; ++v)
for(auto e: adj[v])
rg.add_edge(e.vertex, v);
return rg;
}
// Dijkstra's algorithm for shortest paths from a source
vector<int> Graph::shortest_paths_dijkstra(int source){
vector<bool> vis(size + 1);
vector<int> distance(size + 1);
for(auto& d: distance)
d = infty;
distance[source] = 0;
auto cmp = [&](int x, int y){ return distance[x] > distance[y]; };
priority_queue<int, vector<int>, decltype(cmp)> pq(cmp);
pq.push(source);
while(!pq.empty()){
int v = pq.top();
pq.pop();
//cout << v << " " << distance[v] << endl;
if(vis[v])
continue;
else
vis[v] = 1;
for(auto edge: adj[v]){
//printf("edge from %d to %d has weight %d\n", v, edge.vertex, edge.weight);
if(distance[edge.vertex] > distance[v] + edge.weight){
distance[edge.vertex] = distance[v] + edge.weight;
pq.push(edge.vertex);
}
}
}
return distance;
}
int main(){
ifstream fin;
ofstream fout;
fin.open("dijkstra.in");
fout.open("dijkstra.out");
int n, m, u, v, weight;
fin >> n >> m;
Graph g(n);
for(int i=1; i <= m; ++i){
fin >> u >> v >> weight;
g.add_edge(u, v, weight);
}
vector<int> d = g.shortest_paths_dijkstra(1);
for(int i = 2; i <= n; ++i)
fout << (d[i] == infty ? 0 : d[i]) << " ";
}