#include <bits/stdc++.h>
#define debug(x) cout << #x << " = " << x << endl
#define REP(i,n) for(Long i = 0; i < (Long)n; i++)
#define pb push_back
using namespace std;
//https://www.infoarena.ro/problema/fmcm
typedef int Long;
typedef int Cap;
typedef long long Cost;
const int MX = 350;
const Cap INF_CAP = 1e9;
const Cost INF_COST = 1e12;
struct Edge {
int to;
Cap flow, cap;
Cost cost;
int rev; //index of the backward edge in the adj list of to
Edge(int to, Cap cap, Cost cost, int rev) :
to(to), flow(0), cap(cap), cost(cost), rev(rev){}
Cap resCap() const {return cap - flow;}
};
struct Graph {
vector<Edge> adj[MX];
int parentEdge[MX];
Cost pot[MX];
//After every minCirculation call
//minCost <= pot[u] <= 0, where minCost is the minimum
//sum of negative absolute values of cost
//minCost is bounded by sum(|cost(e)|)
//It's also bounded by (V - 1) * C and
//where C is the maximum value of |cost(e)| for all edges e
//However some intermediate results may have 3 * minCost - 1 <= pot[u]
Cap maxCap = 0;
Cost minCost = 0;
Cap lowFlow;
void clear(int n) {
maxCap = 0;
for (int i = 0 ; i < n; i++) {
adj[i].clear();
pot[i] = 0;
}
}
void addEdge(int u, int v, Cap w, Cost cost, bool dir) {
adj[u].push_back(Edge(v, w, cost, adj[v].size()));
adj[v].push_back(Edge(u, 0, -cost, adj[u].size() - 1));
if (u == v) adj[u].end()[-2].rev++;
maxCap = max(maxCap, w);
minCost -= abs(cost);
if (!dir) addEdge(v, u, w, cost, true);
}
Cost resCost(const Edge &e) const {
int v = e.to;
if (e.rev == -1) return e.cost - pot[v];
int u = adj[e.to][e.rev].to;
return e.cost + pot[u] - pot[v];
}
void pushFlow(int s, int t, Cap inc) {
int v = t;
while (v != s) {
Edge &backward = adj[v][parentEdge[v]];
int u = backward.to;
Edge &forward = adj[u][backward.rev];
forward.flow += inc;
backward.flow -= inc;
v = u;
}
}
void dijkstra(vector<Cost> &d, vector<Cap> &bottleneck) {
typedef pair<Cost, int> Path; //<weight, node>
priority_queue<Path, vector<Path>, greater<Path>> q;
int n = d.size();
for (int u = 0; u < n; u++) q.push(Path(d[u], u));
while (!q.empty()) {
auto [dist, u] = q.top();
q.pop();
if (dist != d[u]) continue;
for (Edge e : adj[u]) {
int v = e.to;
if (e.resCap() < lowFlow) continue;
if (resCost(e) < 0) continue;
if (d[u] + resCost(e) < d[v]) {
d[v] = d[u] + resCost(e);
q.push(Path(d[v], v));
bottleneck[v] = min(bottleneck[u], e.resCap());
parentEdge[v] = e.rev;
}
}
}
}
pair<Cap, Cost> minCirculation(int s, int t, int n, Edge &ts) {
//O(E log V)
//tsCap = 0 means we are looking for an st-path
//tsCap > 0 means we are looking for negative cycle from s to t
vector<Cost> d(n, 0);
vector<Cap> bottleneck(n, 0);
d[s] = resCost(ts);
bottleneck[s] = INF_CAP;
dijkstra(d, bottleneck);
for (int u = 0; u < n; u++) pot[u] += d[u];
pair<Cap, Cost> ans;
if (d[t] >= 0) ans = {0, 0};
else {
Cap cf = bottleneck[t];
if (ts.resCap() > 0) {
cf = min(cf, ts.resCap());
ans = {cf, d[t] * cf};
ts.flow += cf;
adj[ts.to][ts.rev].flow -= cf;
} else ans = {cf, (pot[t] - ts.cost) * cf};
pushFlow(s, t, cf);
}
//Potentials adjustment
//Some potentials may have repeated edge cost
for (int u = 0; u < n; u++) d[u] = -pot[u];
if (ts.resCap() == 0) {
dijkstra(d, bottleneck);
for (int u = 0; u < n; u++) pot[u] += d[u];
}
return ans;
}
pair<Cap, Cost> minCostFlow(int s, int t, int n) {
//O(E^2 * log V * log U) where U is the maximum capacity
//<maxFlow, minCost>
if (maxCap == 0) return {0, 0};
int lg = 63 - __builtin_clzll(maxCap);
pair<Cap, Cost> inc;
Cap totalFlow = 0;
Cost totalCost = 0;
for (lowFlow = (1LL << lg); lowFlow >= 1; lowFlow >>= 1) {
//push flow through negative cycles
for (int u = 0; u < n; u++) {
for (auto &e : adj[u]) {
int v = e.to;
if (e.resCap() >= lowFlow && resCost(e) < 0) {
inc = minCirculation(v, u, n, e);
totalCost += inc.second;
}
}
}
//normal shortest augmenting path
do {
Edge circleEdge = Edge(s, 0, -INF_COST, -1);
inc = minCirculation(s, t, n, circleEdge);
totalFlow += inc.first;
totalCost += inc.second;
} while (inc.first > 0);
}
return {totalFlow, totalCost};
}
} G;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
freopen("fmcm.in", "r", stdin);
freopen("fmcm.out", "w", stdout);
Long n, m , s, t;
cin >> n >> m >> s >> t;
s--;
t--;
REP(i , m){
Long u , v , w , c;
cin >> u >> v >> w >> c;
u--;
v--;
G.addEdge(u , v , w , c, true);
}
cout << G.minCostFlow(s, t , n).second << endl;
return 0;
}