#include <bits/stdc++.h>
#define debug(x) cout << #x << " = " << x << endl
#define REP(i,n) for(Long i = 0; i < (Long)n; i++)
#define pb push_back
using namespace std;
//https://www.infoarena.ro/problema/fmcm
typedef int Long;
typedef int Cap;
typedef long long Cost;
const int MX = 350;
const Cap INF_CAP = 1e9;
const Cost INF_COST = 1e18;
struct Edge {
int to;
Cap flow, cap;
Cost cost;
int rev; //index of the backward edge in the adj list of to
Edge(int to, Cap cap, Cost cost, int rev) :
to(to), flow(0), cap(cap), cost(cost), rev(rev){}
};
struct Graph {
vector<Edge> adj[MX];
int parentEdge[MX];
Cost pot[MX];
Cap maxCap = 0;
Cap lowFlow;
void clear(int n) {
maxCap = 0;
for (int i = 0 ; i < n; i++) {
adj[i].clear();
pot[i] = 0;
}
}
void addEdge(int u, int v, Cap w, Cost cost, bool dir) {
adj[u].push_back(Edge(v, w, cost, adj[v].size()));
adj[v].push_back(Edge(u, 0, -cost, adj[u].size() - 1));
if (u == v) adj[u].end()[-2].rev++;
maxCap = max(maxCap, w);
if (!dir) addEdge(v, u, w, cost, true);
}
void pushFlow(int s, int t, Cap inc) {
int v = t;
while (v != s) {
Edge &backward = adj[v][parentEdge[v]];
int u = backward.to;
Edge &forward = adj[u][backward.rev];
forward.flow += inc;
backward.flow -= inc;
v = u;
}
}
pair<Cap, Cost> dijkstra(int s, int t, int n, Cap tsCap = 0, Cost tsCost = 0) {
//O(E log V)
//tsCap > 0 and tsCost < 0 means we are looking for negative
//cycle from s to t to form a negative circulation
typedef pair<Cost, int> Path; //<weight, node>
priority_queue<Path, vector<Path>, greater<Path>> q;
vector<Cost> d(n, INF_COST);
vector<Cap> residualCap(n, 0);
d[s] = 0;
residualCap[s] = INF_CAP;
q.push(Path(d[s], s));
Cost maxDist = 0;
while (!q.empty()) {
auto [dist, u] = q.top();
q.pop();
maxDist = max(maxDist, d[u]);
if (dist != d[u]) continue;
for (Edge e : adj[u]) {
int v = e.to;
Cap cf = e.cap - e.flow;
Cost cost = e.cost + pot[u] - pot[v];
if (cf >= lowFlow && cost >= 0 && d[u] + cost < d[v]) {
d[v] = d[u] + cost;
q.push(Path(d[v], v));
residualCap[v] = min(residualCap[u], cf);
parentEdge[v] = e.rev;
}
}
}
for (int u = 0; u < n; u++) {
if (u == s) continue;
if (d[u] != INF_COST) pot[u] += d[u] - pot[s];
else pot[u] += maxDist - tsCost - pot[s];
}
pot[s] = d[s];
if (d[t] == INF_COST) return {0, 0};
if (tsCap > 0 && d[t] + tsCost >= 0) return {0, 0};
Cap cf = residualCap[t];
if (tsCap > 0) cf = min(cf, tsCap);
pushFlow(s, t, cf);
if (tsCap == 0) return {cf, pot[t] * cf};
else return {cf, (d[t] + tsCost) * cf};
}
pair<Cap, Cost> minCostFlow(int s, int t, int n) {
//O(E^2 * log V * log U) where U is the maximum capacity
//<maxFlow, minCost>
if (maxCap == 0) return {0, 0};
int lg = 63 - __builtin_clzll(maxCap);
pair<Cap, Cost> inc;
Cap totalFlow = 0;
Cost totalCost = 0;
for (lowFlow = (1LL << lg); lowFlow >= 1; lowFlow >>= 1) {
//push flow through negative cycles
for (int u = 0; u < n; u++) {
for (auto &e : adj[u]) {
int v = e.to;
Cap cf = e.cap - e.flow;
Cost cost = e.cost + pot[u] - pot[v];
if (cf >= lowFlow && cost < 0) {
inc = dijkstra(v, u, n, cf, cost);
Edge &rev = adj[v][e.rev];
e.flow += inc.first;
rev.flow -= inc.first;
totalCost += inc.second;
}
}
}
//normal shortest augmenting path
do {
inc = dijkstra(s, t, n);
totalFlow += inc.first;
totalCost += inc.second;
} while (inc.first > 0);
}
return {totalFlow, totalCost};
}
} G;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
//freopen("test8.in", "r", stdin);
//freopen("test8.out", "w", stdout);
Long n, m , s, t;
cin >> n >> m >> s >> t;
s--;
t--;
REP(i , m){
Long u , v , w , c;
cin >> u >> v >> w >> c;
u--;
v--;
G.addEdge(u , v , w , c, true);
}
cout << G.minCostFlow(s, t , n).second << endl;
return 0;
}