#include <bits/stdc++.h>
#define debug(x) cout << #x << " = " << x << endl
#define REP(i,n) for(Long i = 0; i < (Long)n; i++)
#define pb push_back
using namespace std;
//https://www.infoarena.ro/problema/fmcm
typedef int Long;
typedef int Cap;
typedef long long Cost;
const int MX = 350;
const Cap INF_CAP = 1e9;
const Cost INF_COST = 1e18;
struct Edge {
int to;
Cap flow, cap;
Cost cost;
int rev; //index of the backward edge in the adj list of to
Edge(int to, Cap cap, Cost cost, int rev) :
to(to), flow(0), cap(cap), cost(cost), rev(rev){}
};
struct Graph {
vector<Edge> adj[MX];
int parentEdge[MX];
Cost pot[MX];
//|pot[u]| <= the maximum sum of absolute cost in a path
//which is also bounded by [(V - 1) * C]
//where C is the maximum value of |cost(e)| for all edges e
Cost maxCost = 0;
void clear(int n) {
maxCost = 0;
for (int i = 0 ; i < n; i++) {
adj[i].clear();
pot[i] = 0;
}
}
void addEdge(int u, int v, Cap w, Cost cost, bool dir) {
adj[u].push_back(Edge(v, w, cost, adj[v].size()));
adj[v].push_back(Edge(u, 0, -cost, adj[u].size() - 1));
maxCost = max(maxCost, abs(cost));
if (!dir) addEdge(v, u, w, cost, true);
}
void spfa(int s, int n) { //O(E V)
vector<bool> inQueue(n, false);
for (int i = 0; i < n; i++) pot[i] = INF_COST;
queue<int> q;
pot[s] = 0;
inQueue[s] = true;
q.push(s);
while (!q.empty()) {
int u = q.front();
q.pop();
inQueue[u] = false;
for (Edge e : adj[u]) {
int v = e.to;
if (e.cap - e.flow > 0 && pot[u] + e.cost < pot[v]) {
pot[v] = pot[u] + e.cost;
if (!inQueue[v]) q.push(v);
inQueue[v] = true;
}
}
}
}
void pushFlow(int s, int t, Cap inc) {
int v = t;
while (v != s) {
Edge &backward = adj[v][parentEdge[v]];
int u = backward.to;
Edge &forward = adj[u][backward.rev];
forward.flow += inc;
backward.flow -= inc;
v = u;
}
}
pair<Cap, Cost> dijkstra(int s, int t, int n) { //O(E log V)
//<flow, cost>
for (int u = 0; u < n; u++) {
if (pot[u] != INF_COST) assert(abs(pot[u]) <= (n - 1) * maxCost);
}
typedef pair<Cost, int> Path; //<weight, node>
priority_queue<Path, vector<Path>, greater<Path>> q;
vector<Cost> d(n, INF_COST);
vector<Cap> residualCap(n, 0);
d[s] = 0;
residualCap[s] = INF_CAP;
q.push(Path(d[s], s));
while (!q.empty()) {
auto [dist, u] = q.top();
q.pop();
if (dist != d[u]) continue;
for (Edge e : adj[u]) {
int v = e.to;
Cap cf = e.cap - e.flow;
Cost cost = e.cost + pot[u] - pot[v];
if (cf > 0 && d[u] + cost < d[v]) {
d[v] = d[u] + cost;
q.push(Path(d[v], v));
residualCap[v] = min(residualCap[u], cf);
parentEdge[v] = e.rev;
}
}
}
if (d[t] == INF_COST) return {0, 0};
for (int i = 0; i < n; i++) {
if (pot[i] != INF_COST) pot[i] += d[i];
}
Cap cf = residualCap[t];
pushFlow(s, t, cf);
return {cf, pot[t] * cf};
}
pair<Cap, Cost> minCostFlow(int s, int t, int n) {
//O(E log V * maxFlow)
//maxFlow <= V * U, where U is the maximum capacity
//Assumption: Initially no negative cycles
//<maxFlow, minCost>
//spfa(s, n); //not necessary if there is no negative edges
pair<Cap, Cost> inc;
Cap flow = 0;
Cost cost = 0;
do {
inc = dijkstra(s, t, n);
flow += inc.first;
cost += inc.second;
} while (inc.first > 0);
return {flow, cost};
}
} G;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
freopen("fmcm.in", "r", stdin);
freopen("fmcm.out", "w", stdout);
Long n, m , s, t;
cin >> n >> m >> s >> t;
s--;
t--;
REP(i , m){
Long u , v , w , c;
cin >> u >> v >> w >> c;
u--;
v--;
G.addEdge(u , v , w , c, true);
}
cout << G.minCostFlow(s, t , n).second << endl;
return 0;
}