Pagini recente » Cod sursa (job #1644187) | Cod sursa (job #1809430) | Cod sursa (job #1427559) | Cod sursa (job #2141280) | Cod sursa (job #2823474)
#include <bits/stdc++.h>
using namespace std;
ifstream fin("distante.in");
ofstream fout("distante.out");
int n,m,s;
vector<vector<pair<int,int>>> muchii; //lista de adiacenta
vector<int> sol;
vector<int> sol_corecta;
vector<int> Dijkstra(int s)
{
///complexitate: O(m * logn)
vector<int> viz(n+1,0); //pentru a marca nodurile prin care trecem
vector<int> d; //distanta de la s la celelalte noduri
const int inf = 1005;
//min heap cu sortare dupa distanta (primul element)
priority_queue <pair<int,int>, vector<pair<int,int>>, greater<pair<int, int>>> dist_nod;
//initializarea
d.resize(n+1);
for(int i=1; i<=n; ++i)
{
if(i!=s)
d[i]=inf;
else
{
d[i]=0;
dist_nod.push(make_pair(d[i],i)); //adaug doar nodul sursa in heap initial
}
}
while (!dist_nod.empty())
{
int u=dist_nod.top().second; //extrage nodul cu eticheta minima (distanta minima)
dist_nod.pop();
if(!viz[u])
{
viz[u]=1;
for(int i=0; i<(int)muchii[u].size(); ++i) //caut nodurile v pentru care exista muchia uv
{
int v,cost;
v=muchii[u][i].first;
cost=muchii[u][i].second; //dintre u si v
//verific daca pot relaxa muchia (il folosesc pe u ca intermediar)
if(d[v] > d[u] + cost)
{
d[v]=d[u]+cost; //actualizez distanta
dist_nod.push(make_pair(d[v],v));
}
}
}
}
return d;
}
bool Verifica(vector<int>& a, vector<int>& b)
{
if(a.size()!=b.size())
return 0;
for(int i=0; i<a.size(); ++i)
if(a[i]!=b[i])
return 0;
return 1;
}
int main()
{
int t,a,b,c;
fin>>t;
for(int i=0; i<t; ++i)
{
fin>>n>>m>>s;
sol.clear();
sol.resize(n+1);
for(int j=1; j<=n; ++j)
fin>>sol[j];
muchii.clear();
muchii.resize(n+1);
for(int j=0; j<m; ++j)
{
fin>>a>>b>>c;
muchii[a].push_back(make_pair(b,c));
muchii[b].push_back(make_pair(a,c));
}
sol_corecta=Dijkstra(s);
if(Verifica(sol,sol_corecta))
fout<<"DA\n";
else
fout<<"NU\n";
}
return 0;
}