#include <iostream>
#include <fstream>
#include <vector>
#include <stack>
#include <algorithm>
#include <unordered_map>
#include <set>
#include <deque>
#include <queue>
#include <climits>
#include <string>
#include <tuple>
#include <cstring>
#define inf INT_MAX - 1000000
#define Nmax 100001
using namespace std;
int Exercitiu = 11;
ifstream fin;
ofstream fout;
class graf
{
int noduri, muchii;
vector<vector<int> > adj;
vector<int> lista;
vector< vector<pair<int,int> > > adj_pair;
vector<vector<int> > adjT;
public:
graf(int numar_noduri, int numar_muchii, int aux);
graf(int numar_noduri, int numar_muchii);
graf(int numar_noduri);
graf(int numar_noduri, int numar_muchii, string ctc);
graf();
// tema bf-df
void BFS(int);
void DFS(vector<bool> &, int);
void sortaret(int, bool *, stack<int> &);
void ctc();
void dfs_ctc(int nod, vector <bool> &visited, stack<int> &mystack, vector<vector<int> > adj);
// tema apm
void apm();
void union_apm(int x, int y, int tata[], int rang[]);
int find_apm(int x, int tata[]);
void disjoint();
void dijkstra();
void dijkstra1();
//tema lab 5
void royfloyd();
void dfs_darb(int curr, int &diam, int &nod_departe, int visited[]);
void darb();
//tema lab6
int eulerian();
void hamiltonian();
bool bfs_cuplaj(int st[], int dr[], int dist[]);
bool dfs_cuplaj(int nod, int st[], int dr[], int dist[]);
void cuplaj();
};
graf ::graf()
{
noduri = 0;
muchii = 0;
adj.resize(0);
}
graf ::graf(int numar_noduri, int numar_muchii, int aux)
{
noduri = numar_noduri;
muchii = numar_muchii;
int x, y;
adj.resize(numar_noduri + 1);
for (int i = 1; i <= numar_muchii; i++)
{
fin >> x >> y;
adj[x].push_back(y);
}
}
graf ::graf(int numar_noduri, int numar_muchii)
{
noduri = numar_noduri;
muchii = numar_muchii;
int x, y;
adj.resize(numar_noduri + 1);
for (int i = 1; i <= numar_muchii; i++)
{
fin >> x >> y;
adj[x].push_back(y);
adj[y].push_back(x);
}
}
graf ::graf(int numar_noduri)
{
noduri = numar_noduri;
int x, y;
adj.resize(numar_noduri + 1);
while (fin >> x >> y)
{
adj[x].push_back(y);
adj[y].push_back(x);
}
}
graf ::graf(int numar_noduri, int numar_muchii, string ctc){
noduri = numar_noduri;
muchii = numar_muchii;
int x, y;
adj.resize(numar_noduri + 1);
for (int i = 1; i <= numar_muchii; i++)
{
fin >> x >> y;
adj[x].push_back(y);
adjT[y].push_back(x);
}
}
void graf ::BFS(int start)
{
int dist[noduri + 1];
for (int i = 1; i <= noduri; i++)
dist[i] = -1;
bool visited[noduri + 1];
for (int i = 1; i <= noduri; i++)
visited[i] = false;
queue<int> q;
q.push(start);
dist[start] = 0;
visited[start] = true;
while (!q.empty())
{
int nod = q.front();
q.pop();
for (int i = 0; i < adj[nod].size(); i++)
if (visited[adj[nod][i]] == false)
{
q.push(adj[nod][i]);
visited[adj[nod][i]] = true;
dist[adj[nod][i]] = dist[nod] + 1;
}
}
for (int i = 1; i <= noduri; i++)
fout << dist[i] << " ";
}
void graf ::DFS(vector<bool> &visited, int start)
{
visited[start] = true;
for (int i = 0; i < adj[start].size(); i++)
if (visited[adj[start][i]] == false)
DFS(visited, adj[start][i]);
}
void graf::dfs_ctc(int nod, vector <bool> &visited, stack<int> &mystack, vector<vector<int> >adj) {
mystack.push(nod);
visited[nod] = true;
for (int i = 0; i < adj[nod].size(); i++)
{
int curr = adj[nod][i];
if (visited[curr] == false)
dfs_ctc(curr, visited, mystack, adj);
}
}
void graf::ctc(){
fin>>noduri >> muchii;
int x , y;
adj.resize(noduri+1);
adjT.resize(noduri+1);
for (int i=1; i<=muchii; i++)
{
fin>>x >> y;
adj[x].push_back(y);
adjT[y].push_back(x);
}
vector<bool> visited, visitedT;
stack <int> mystack1, mystack2;
//mystack = stack <int> (noduri+1);
visited = vector<bool>(noduri + 1, false);
visitedT = vector<bool>(noduri + 1, false); //vectorul de vizitate pt transpusa
//vector<int> vtemp;
vector<stack<int> >ctc;
ctc = vector<stack<int> >(noduri + 1); // comp tare conexe
int nr = 0;
// pas 1 facem dfs normal si obtinem nodurile in stack
for (int i = 1; i <= noduri; i++)
{if (visited[i] == false)
{
dfs_ctc(i, visited, mystack1, adj);
}
}
// pas 2 scoatem pe rand elem din mystack si pt fiecare facem dfs incepand de la el
//cand se face dfs2 pe transpusa se iau pas cu pas ctc iar pt a trece la urm ctc trb facut asta "manual"
for(int i =1; i<=noduri; i++)
{
if (visitedT[i] == false)
{
dfs_ctc(i, visitedT, mystack2, adjT); // in vtemp se stockeaza pe rand comp conexe iar apoi se copiaza in ctc care va fi si reziltatul finl
ctc.push_back(mystack2);
nr++;
}
}
fout << nr << endl;
for (int i = 1; i <= nr; i++)
{
while(ctc[ctc.size()-i].size()>0)
{
fout << ctc[ctc.size()-i].top() << " ";
ctc[ctc.size()-i].pop();
}
fout << endl;
}
}
void graf::sortaret(int nod, bool visited[], stack<int> &mystack)
{
visited[nod] = true;
for (int i = 0; i < adj[nod].size(); ++i)
if (!visited[adj[nod][i]])
{
sortaret(adj[nod][i], visited, mystack);
}
// introducem nodurile in postordine (dupa ce ies din stiva) in stiva solutie
mystack.push(nod);
}
int graf::find_apm(int nod, int parents[]) // gasim parintele absolut al lui x
{
while (nod != parents[nod])
{
nod = parents[nod];
find_apm(nod, parents);
}
return nod;
}
void graf::union_apm(int x, int y, int parents[], int rank[]) // union by RANK legam arb mic de cel mare
{
x = find_apm(x, parents); // in x se va memora parintele abs al acestuia
y = find_apm(y, parents); // in y se va memora parintele abs al acestuia
if (rank[x] > rank[y]) // mai mare
parents[y] = x;
else if (rank[x] < rank[y]) // mai mic
parents[x] = y;
else // daca este egal atunci vine conditia de a actualiza rank
{
parents[x] = y;
rank[y] += 1;
}
}
void graf::apm()
{
vector<pair<int, pair<int, int> > > adj_cost; // m.first == costul, m.second.first = x, m.second.second = y;
vector<pair<int, int> > mst;
int n, m, parents[Nmax], rank[Nmax];
int x, y, cost;
fin >> n >> m;
// int parents[this->n+1], rank[this->n+1];
for (int i = 0; i < m; i++)
{
fin >> x >> y >> cost;
adj_cost.push_back(make_pair(cost, make_pair(x, y)));
}
for (int i = 0; i < n; i++) // initializare
{
parents[i] = i; // parintele
rank[i] = 1; // dimensiunea arborelui (cati copii are in total) => initial fiecare nod reprez un arbore form doar din rad
}
cost = 0;
sort(adj_cost.begin(), adj_cost.end()); // sortam adj dupa cost
for (auto muchie : adj_cost)
{
if (find_apm(muchie.second.first, parents) != find_apm(muchie.second.second, parents)) // nodurile au parinti abs dif deci facem union pt ca nu sunt in aceasi comp
{
mst.push_back(muchie.second); // punem muchia in mst
union_apm(muchie.second.first, muchie.second.second, parents, rank); // facem union intre cele 2 noduri
cost += muchie.first; // incrementam costul final
}
}
fout << cost << endl
<< mst.size() << endl;
for (int i = 0; i < mst.size(); i++)
{
fout << mst[i].first << " " << mst[i].second << "\n";
}
}
void graf::disjoint()
{
int n, m;
fin >> n >> m;
int parents[n + 1];
int rank[n + 1];
for (int i = 0; i <= n; ++i)
{
parents[i] = 0;
rank[i] = 1;
}
int op, x, y;
while (fin >> op >> x >> y)
{
if (op == 1) // union by rank
{
//union_apm(x,y,parents,rank);
while (parents[x] != 0)
x = parents[x]; // la final in x va fi parintele abs al acestuia la fel si in y
while (parents[y] != 0)
y = parents[y];
int rx = rank[x];
int ry = rank[y];
// x=y deci au aceasi parinti abs atunci deja fac parte din aceasi comp deci nu facem nimic
// cazurile sunt pt noduri ce nu sunt deja in aceasi comp si trb facut "union"
// union leaga parinte abs de parinte abs si il leaga pe cel cu intaltimea mai mica la cel cu inaltimea mai mare
if (rx < ry) //
parents[x] = y;
else if (rx > ry)
parents[y] = x;
else // daca rankurile sunt egale deci oricare poate fi parinte si incrementam rank
{
parents[x] = y;
rank[y] += 1;
}
}
else // find + compression
{
int pa_x = x, pa_y = y, aux; // pa_x = parintele absolut al lui x , similar pa_y
while (parents[pa_x] != 0) // gasim parintele abs al lui x
pa_x = parents[pa_x];
while (parents[pa_y] != 0) // gasim parinte abs al lui y
pa_y = parents[pa_y];
if (pa_x == pa_y) // x si y au aceaselasi parinte absolut
fout << "DA\n";
else
fout << "NU\n";
while (x != pa_x) // actualizam parintii absoluti pt actualul x si pt restul nodurilor legat de el
{
aux = parents[x];
parents[x] = pa_x;
x = aux;
}
while (y != pa_y) // actualizam parintii absoluti pt actualul y si pt restul nodurilor legat de el
{
aux = parents[y];
parents[y] = pa_y;
y = aux;
}
}
}
}
void graf::dijkstra()
{
int x, y, n, m;
int i;
fin >> n >> m;
int value[n + 1]; // in value se retin distantele de la nodul src la restul
vector<vector<pair<int, int> > > adj;
adj.resize(n + 1);
set<pair<int, int> > set_cost_nod; // set_cost_nod retine nodurile inca neprocesate si costul pt a ajunge in ele
// folosim set pt ca atunci cand vom lua un alt nod vrem sa il luam pe cel cu costul minim
// ce se afla la un mom de timp in set_nod_cost, inseamna ca acele noduri nu au fost inca procesate.
for (int i = 0; i < m; ++i)
{
int cost;
fin >> x >> y >> cost;
adj[x].push_back(make_pair(y, cost));
}
for (i = 1; i <= n; ++i)
{
value[i] = inf; // retine costurile plecand in nod src
}
value[1] = 0;
set_cost_nod.insert(make_pair(0, 1)); // cost 0 pt nodul sursa 1
while (!set_cost_nod.empty())
{
int nod = (*set_cost_nod.begin()).second; // luam nodul curent
set_cost_nod.erase(set_cost_nod.begin()); // pop nod crr si cost
for (int i = 0; i < adj[nod].size(); ++i)
{
int nod_dest = adj[nod][i].first; // nod_dest = este nodul destinatie de la care plecam din nodul crr("nod")
int cost_dest = adj[nod][i].second; // costul muchiei de la nod la nod_dest
if (value[nod] + cost_dest < value[nod_dest]) // value[nod] retine dist de la nodul src(1) la nodul crr (nod)
// adugam costul de la nod crr la nod dest sa vedem daca gasim o cale mai "ieftina" din nodul src(1) la nod dest
{
if (value[nod_dest] != inf)
{
set_cost_nod.erase(set_cost_nod.find(make_pair(value[nod_dest], nod_dest)));
// in cazul in care value[nod_dest] !=inf adica dist din 1 la nod_dest a mai fost actualizata si totusi s-a gasit
// un drum mai scurt, vom scoate valoarea veche din set_nod_cost pt a o reactualiza mai jos in value si pt a face push
// in set la noua valoare pt nod_dest
}
// deci se respecta cond din if
value[nod_dest] = value[nod] + cost_dest; // actualizam noul cost pt nodul dest
set_cost_nod.insert(make_pair(value[nod_dest], nod_dest)); // inseram in set (costul de a ajung din src la nod_dest, nod dest)
// la urmatoarele iteratii se va lua nod_dest ca fiind noul nod crr
}
}
}
for (int i = 2; i <= n; ++i)
if (value[i] != inf)
fout << value[i] << " ";
else
fout << 0 << " ";
}
void graf::royfloyd()
{
int n;
int dist[101][101];
int i,j,k;
fin>>n;
for (i=1; i<=n; ++i)
for (j=1; j<=n; ++j) //citire
{
fin>>dist[i][j];
if (dist[i][j]==0)
dist[i][j]=inf;
}
for (k=1; k<=n; ++k) // luam pe rand nodurile noi pt a gasi un drum alternativ
for (i=1; i<=n; ++i) // nodul sursa
for (j=1; j<=n; ++j) //nodul dest
{
if(dist[i][k]==inf || dist[k][j]==inf) // nu sunt cunoscute dist
continue;
else if (dist[i][k]+dist[k][j]<dist[i][j]) //gasim un drum alternativ mai scurt
dist[i][j]=dist[i][k]+dist[k][j]; //actualizam
}
for (i=1; i<=n; ++i)
{
for (j=1; j<=n; ++j)
if (dist[i][j]==inf || i==j)
fout<<0<<" ";
else
fout<<dist[i][j]<<" ";
fout<<endl;
}
}
void graf::dfs_darb(int curr, int &diam, int &nod_departe, int visited[]){
for(int i = 0; i < adj[curr].size(); i++)
{
if(visited[adj[curr][i]] == 0)
{
visited[adj[curr][i]]=visited[curr];
visited[adj[curr][i]]++;
if(visited[adj[curr][i]] > diam)
{
nod_departe = adj[curr][i];
diam=visited[adj[curr][i]];
}
dfs_darb(adj[curr][i], diam, nod_departe, visited);
}
}
}
void graf::darb(){
fin>>noduri;
adj.resize(noduri+1);
for(int i=1; i<=noduri-1; i++)
{
int x, y;
fin>>x>>y;
adj[x].push_back(y);
adj[y].push_back(x);
}
int visited[100001];
int diam=0, nod_departe=0;
memset(visited,0,sizeof(visited));
visited[1]=1;
dfs_darb(1, diam, nod_departe, visited);
diam=0;
memset(visited,0,sizeof(visited));
visited[nod_departe]=1;
dfs_darb(nod_departe, diam, nod_departe, visited);
fout<<diam;
}
int graf::eulerian(){
int x, y;
fin >> noduri >> muchii;
adj.resize(noduri + 1);
int from[muchii], to[muchii];
bool visited[muchii];
for (int i = 0; i < muchii; i++)
{
fin >> x >> y;
adj[x].push_back(i);
adj[y].push_back(i);
from[i] = x;
to[i] = y;
visited[i] = false;
}
for (int i = 1; i < noduri + 1; i++)
if (adj[i].size() % 2 != 0 || adj[i].size() == 0)
{
fout << "-1\n";
return 0;
}
vector<int> sol;
stack<int> stk;
stk.push(1);
while (!stk.empty())
{
int nod = stk.top();
if (adj[nod].size() > 0)
{
int muchie = adj[nod].back();
adj[nod].pop_back();
if (!visited[muchie])
{
int vecin;
if (nod != from[muchie])
vecin = from[muchie];
else
vecin = to[muchie];
visited[muchie] = true;
stk.push(vecin);
}
}
else
{
stk.pop();
sol.push_back(nod);
}
}
for (int i = 0; i < sol.size() - 1; i++)
fout << sol[i] << " ";
return 1;
}
bool graf::bfs_cuplaj(int st[],int dr[],int dist[])
{
queue<int> q;
for (int i=1; i<=noduri; ++i)
if (st[i]==0)
{
dist[i]=0;
q.push(i);
}
else
dist[i]=inf;
dist[0]=inf;
while (!q.empty())
{
int curr=q.front();
q.pop();
if (dist[curr]<dist[0])
for (int i=0; i<adj_pair[curr].size(); ++i)
{
int vecin=adj_pair[curr][i].first;
if (dist[dr[vecin]]==inf)
{
dist[dr[vecin]]=dist[curr]+1;
q.push(dr[vecin]);
}
}
}
return dist[0]!=inf;
}
bool graf::dfs_cuplaj(int nod, int st[], int dr[], int dist[])
{
if (nod!=0)
{
for (int i=0; i<adj_pair[nod].size(); ++i)
{
int vecin=adj_pair[nod][i].first;
if (dist[dr[vecin]]==dist[nod]+1)
if (dfs_cuplaj(dr[vecin],st,dr,dist))
{
dr[vecin]=nod;
st[nod]=vecin;
return true;
}
}
dist[nod]=inf;
return false;
}
return true;
}
void graf::cuplaj(){
int nrmuchii, x, y, sol=0;
fin>>noduri >>muchii >>nrmuchii;
adj_pair.resize(noduri+1);
for(int i=0; i<nrmuchii; i++)
{
fin >> x >> y;
adj_pair[x].push_back(make_pair(y,0));
}
int st[noduri+1],dr[muchii+1],dist[noduri+1];
memset(st, 0, sizeof(st));
memset(dr, 0, sizeof(dr));
while (bfs_cuplaj(st,dr,dist))
{
for (int i=1; i<=noduri; ++i)
if (st[i]==0 && dfs_cuplaj(i,st,dr,dist))
++sol;
}
fout<<sol<<endl;
for (int i=0; i<=noduri; ++i)
if (st[i])
fout<<i<<" "<<st[i]<<endl;
}
int main()
{
//cout<<"vlad";
switch (Exercitiu)
{
case 1: //bfs
{
fin.open("bfs.in", std::ifstream::in);
fout.open("bfs.out", std::ifstream::out);
int n, m, s;
fin >> n >> m >> s;
graf graf(n, m, s);
graf.BFS(s);
fin.close();
fout.close();
break;
}
case 2: //dfs
{
int n, m;
fin.open("dfs.in", std::ifstream::in);
fout.open("dfs.out", std::ifstream::out);
fin >> n >> m;
vector<bool> visited;
visited.resize(n + 1);
for (int index = 1; index <= n; index++)
visited[index] = false;
graf graf(n, m);
int contor = 0;
for (int index = 1; index <= n; index++)
{
if (visited[index] == false)
{
graf.DFS(visited, index);
contor++;
}
}
fout << contor;
fin.close();
fout.close();
break;
}
case 3: //sortaret
{
int n, m;
fin.open("sortaret.in", std::fstream::in);
fout.open("sortaret.out", std::fstream::out);
fin >> n >> m;
graf graf(n,m,0);
bool visited[n + 1];
stack<int> mystack;
int i;
for (i = 1; i <= n; ++i)
visited[i] = false;
for (i = 1; i <= n; ++i)
if (!visited[i])
graf.sortaret(i, visited, mystack);
while (!mystack.empty())
{
// afisam in postordine invers
fout << mystack.top() << " ";
mystack.pop();
}
fin.close();
fout.close();
break;
}
case 4: //ctc
{
fin.open("ctc.in", std::fstream::in);
fout.open("ctc.out", std::fstream::out);
graf graf;
graf.ctc();
fin.close();
fout.close();
break;
}
case 5: //apm
{
fin.open("apm.in", std::fstream::in);
fout.open("apm.out", std::fstream::out);
graf graf;
graf.apm();
fin.close();
fout.close();
break;
}
case 6: //disjoint
{
fin.open("disjoint.in", std::fstream::in);
fout.open("disjoint.out", std::fstream::out);
graf graf;
graf.disjoint();
fin.close();
fout.close();
break;
}
case 7: //dijkstra
{
fin.open("dijkstra.in", std::fstream::in);
fout.open("dijkstra.out", std::fstream::out);
graf graf;
graf.dijkstra();
fin.close();
fout.close();
break;
}
case 8: //royfloyd
{
fin.open("royfloyd.in",std::fstream::in);
fout.open("royfloyd.out",std::fstream::out);
graf graf;
graf.royfloyd();
fin.close();
fout.close();
break;
}
case 9: // darb
{
fin.open("darb.in",std::fstream::in);
fout.open("darb.out",std::fstream::out);
graf graf;
graf.darb();
fin.close();
fout.close();
break;
}
case 10: //ciclu euler
{
fin.open("ciclueuler.in", std::ifstream::in);
fout.open("ciclueuler.out", std::ifstream::out);
graf graf;
graf.eulerian();
fin.close();
fout.close();
break;
}
case 11: //cuplaj
{
fin.open("cuplaj.in", std::ifstream::in);
fout.open("cuplaj.out", std::ifstream::out);
graf graf;
graf.cuplaj();
fin.close();
fout.close();
}
default:
break;
}
return 0;
}