#include <bits/stdc++.h>
#define nmax 100003
#define X get<0>
#define Y get<1>
#define COST get<2>
#define VIZ get<3>
using namespace std;
ifstream fin("hamilton.in");
ofstream fout("hamilton.out");
class graf {
/// tema 1
private:
int n, m;
vector<int> h[nmax];
bitset<nmax> viz;
int k, dist[nmax], nivel[nmax], mic[nmax];
bool orientat = false;
vector<int> transpus[nmax];
vector<int> ctc[nmax];
queue< pair<int, int> >q;
stack<int> s;
stack<int> s_biconex;
vector<int> cbiconexe[nmax];
vector< vector<int> > muchii;
void dfs(int nod);
void dfsctc(int nod);
void bfs(int s);
void dfs_biconex(int nod, int tata);
void muchii_critice(int nod, int tata, vector< vector<int> >& h2);
public:
graf()
{
n = m = k = 0;
}
void set_graf(int noduri, int muchii, bool Orientat);
void adauga_muchie(int x, int y);
void adauga_muchie(int x, int y, int cost);
void adauga_muchie_matr(int x, int y, int cost);
void componente_conexe();
void distante(int s);
void sortare_topologica();
void componente_tare_conexe();
void componente_biconexe();
static void havel_hakimi();
static vector< vector<int> > criticalConnections(int n, vector< vector<int> >& connections);
/// tema 2 ----------------------------------------------------------------------------------
private:
vector < tuple < int, int, int, bool > > muchii_cost;
vector< pair<int, int> > graf_cost[nmax];
int matr[1003][1003];
void unionn(int x, int y, vector<int> &t);
int findd(int x, vector<int> &t);
int kruskal(int &n, int &m, vector<tuple<int, int, int, bool>> &muchii_cost, vector<int> &t);
void dijkstra(int &start, vector<int> &d, vector<bool> &in_coada);
void bellman_ford(bool &circuit, vector<int> &d, queue<int> &coada_noduri, vector<bool>& in_coada, vector<int> &contor);
public:
void apm();
void pb_dijkstra(int start);
void disjoint();
void pb_bellman_ford(int start);
/// tema 3 ----------------------------------------------------------------------------------
private:
void dfs_darb(int nod, int dist, vector<int> &d, bitset<nmax> &viz);
void roy_floyd(vector< vector<int> > &d);
bool bfs_ford_fulkerson(int start, int dest, vector< vector<int> > &rezidual, vector<int> &t);
int ford_fulkerson(int start, int dest, vector< vector<int> > &rezidual, vector<int> &t);
public:
void darb();
void pb_roy_floyd();
void maxflow();
/// tema 4 ----------------------------------------------------------------------------------
private:
vector<int> ciclu_eulerian();
int ciclu_hamiltonian();
public:
void pb_ciclueuler();
void pb_hamilton();
};
void graf :: set_graf(int noduri, int muchii, bool Orientat)
{
n = noduri;
m = muchii;
orientat = Orientat;
}
void graf :: adauga_muchie(int x, int y)
{
if(orientat)
{
h[x].push_back(y);
transpus[y].push_back(x); // ctc
}
else
{
h[x].push_back(y);
h[y].push_back(x);
}
}
void graf :: adauga_muchie(int x, int y, int cost)
{
if(orientat)
{
graf_cost[x].push_back({y, cost});
}
else
{
// pentru kruskal
muchii_cost.push_back({x, y, cost, false});
}
}
void graf :: adauga_muchie_matr(int x, int y, int cost)
{
matr[x][y] = cost;
}
void graf :: dfs(int nod)
{
viz[nod] = 1;
for(auto i : h[nod])
if(!viz[i])
dfs(i);
// pentru sortarea topologica si ctc
s.push(nod);
}
void graf :: dfsctc(int nod)
{
viz[nod] = 1;
ctc[k].push_back(nod);
for(auto i : transpus[nod])
if(!viz[i])
dfsctc(i);
}
void graf :: bfs(int s)
{
pair<int, int> nod;
q.push({s, 0});
viz[s] = 1;
dist[s] = 0;
while(!q.empty())
{
nod = q.front();
dist[nod.first] = nod.second;
q.pop();
for(auto i : h[nod.first])
if(!viz[i])
{
q.push({i, nod.second + 1});
viz[i] = 1;
}
}
}
void graf :: componente_conexe()
{
int nrc;
nrc = 0;
for(int i = 1; i <= n; i++)
if(!viz[i])
{
dfs(i);
nrc++;
}
fout << nrc << "\n";
}
void graf :: distante(int s)
{
for(int i = 1; i <= nmax - 3; i++)
dist[i] = -1;
bfs(s);
for(int i = 1; i <= n; i++)
fout << dist[i] << " ";
fout << "\n";
}
void graf :: sortare_topologica()
{
for(int i = 1; i <= n; i++)
if(!viz[i])
dfs(i);
while(!s.empty())
{
fout << s.top() << " ";
s.pop();
}
fout << "\n";
}
void graf :: componente_tare_conexe() // kosaraju
{
int top;
for(int i = 1; i <= n; i++)
if(!viz[i])
dfs(i);
viz.reset();
while(!s.empty())
{
top = s.top();
s.pop();
if(!viz[top])
{
k++;
dfsctc(top);
}
}
fout << k << "\n";
for(int i = 1; i <= k; i++)
{
for(auto j : ctc[i])
fout << j << " ";
fout<<"\n";
}
}
void graf :: dfs_biconex(int nod, int tata)
{
viz[nod] = 1;
s_biconex.push(nod);
mic[nod] = nivel[nod] = nivel[tata] + 1;
for(auto i : h[nod])
{
if(i != tata)
{
if(viz[i])
mic[nod] = min(mic[nod], nivel[i]);
else
{
dfs_biconex(i, nod);
mic[nod] = min(mic[nod], mic[i]);
if(nivel[nod] <= mic[i]) // o noua componenta biconexa
{
k++;
while(s_biconex.top() != i)
{
cbiconexe[k].push_back(s_biconex.top());
s_biconex.pop();
}
s_biconex.pop();
cbiconexe[k].push_back(i);
cbiconexe[k].push_back(nod);
}
}
}
}
}
void graf :: componente_biconexe()
{
nivel[0] = 0;
dfs_biconex(1, 0);
fout << k << "\n";
for(int i = 1; i <= k; i++)
{
for(auto j : cbiconexe[i])
fout << j << " ";
fout<<"\n";
}
}
void graf :: havel_hakimi()
{
int lg, x, suma = 0;
vector<int>v;
fin >> lg;
for(int i = 1; i <= lg; i++)
{
fin >> x;
v.push_back(x);
suma += x;
}
if(suma % 2 == 1)
{
fout << "Nu\n";
return;
}
while(true)
{
if(v.size() == 0)
{
fout << "Da\n";
return;
}
sort(v.begin(), v.end(), greater<int>());
x = v[0];
if((int)v.size() - 1 < x)
{
fout << "Nu\n";
return;
}
for(int i = 1; i < x + 1; i++)
{
v[i]--;
v[i - 1]= v[i];
if(v[i] < 0)
{
fout << "Nu\n";
return;
}
}
v.pop_back();
}
}
/*void graf :: muchii_critice(int nod, int tata, vector< vector<int> >& h2)
{
viz[nod] = 1;
{1}
mic[nod] = nivel[nod] = nivel[tata] + 1;
{1}
for(int i = 0; i < h2[nod].size(); i++)
{
int vecin = h2[nod][i];
{1}
if(!viz[vecin])
{
muchii_critice(vecin, nod, h2);
{1}
mic[nod] = min(mic[nod], mic[vecin]);
{1}
if(nivel[nod] < mic[vecin])
{
vector<int> muchie = {nod, vecin};
muchii.push_back(vector<int>{nod, vecin});
}
}
else if(vecin != tata)
{
mic[nod] = min(mic[nod], nivel[vecin]);
}
}
}
{1}
vector<vector<int>> graf :: criticalConnections(int n, vector<vector<int>>& connections)
{
vector< vector<int> > h2(100003);
for(int i = 0; i < connections.size(); i++)
{
h2[connections[i][0]].push_back(connections[i][1]);
h2[connections[i][1]].push_back(connections[i][0]);
}
muchii_critice(1, 0, h2);
return muchii;
}*/
///---------------------------------------------------------------------------------------------
void graf :: unionn(int x, int y, vector<int> &t)
{
t[y] = x;
}
int graf :: findd(int x, vector<int> &t)
{
int rad, y;
rad = x;
while(t[rad] != 0)
rad = t[rad];
while(x != rad)
{
y = t[x];
t[x] = rad;
x = y;
}
return rad;
}
int graf :: kruskal(int &n, int &m, vector<tuple<int, int, int, bool>> &muchii_cost, vector<int> &t)
{
int costmin, nrcc, x, y;
sort(muchii_cost.begin(), muchii_cost.end(),
[](const tuple<int, int, int, bool> &A, const tuple<int, int, int, bool> &B) -> bool { return COST(A) < COST(B); });
nrcc = n;
costmin = 0;
for(int i = 0; i < m && nrcc > 1; i++)
{
x = findd(X(muchii_cost[i]), t);
y = findd(Y(muchii_cost[i]), t);
if(x != y)
{
VIZ(muchii_cost[i]) = true;
costmin += COST(muchii_cost[i]);
unionn(x, y, t);
nrcc--;
}
}
return costmin;
}
void graf :: apm()
{
vector<int> t(nmax);
for(int i = 0; i <= nmax - 3; i++)
t[i] = 0;
fout << kruskal(n, m, muchii_cost, t) << "\n";
int cnt;
cnt = 0;
for(int i = 0; i < m; i++)
if(VIZ(muchii_cost[i]) == true)
cnt++;
fout << cnt << "\n";
for(int i = 0; i < m; i++)
if(VIZ(muchii_cost[i]) == true)
fout << X(muchii_cost[i]) << " " << Y(muchii_cost[i]) << "\n";
}
void graf :: dijkstra(int &start, vector<int> &d, vector<bool> &in_coada)
{
int k, v, c;
priority_queue< pair<int, int>, vector< pair<int, int> >, greater< pair<int, int> > > coada_muchii;
coada_muchii.push({d[start], start});
while(!coada_muchii.empty())
{
k = coada_muchii.top().second;
coada_muchii.pop();
in_coada[k] = false;
for (auto w : graf_cost[k])
{
v = w.first;
c = w.second;
if(d[v] > d[k] + c)
{
d[v] = d[k] + c;
if(!in_coada[v])
{
coada_muchii.push({d[v], v});
in_coada[v] = true;
}
}
}
}
}
void graf :: pb_dijkstra(int start)
{
vector<int> d(nmax);
vector<bool> in_coada(nmax);
for (int i = 1; i <= n; i++)
d[i] = 1e9;
d[start] = 0; // de la nodul 1 plec
dijkstra(start, d, in_coada);
for(int i = 2; i <= n; i++)
if(d[i] == 1e9) fout << "0 ";
else fout << d[i] << " ";
fout << "\n";
}
void graf :: disjoint()
{
int cod, x, y, a, b;
vector<int> t(nmax);
for(int i = 0; i <= nmax - 3; i++)
t[i] = 0;
for(int i = 1; i <= m; i++)
{
fin >> cod >> x >> y;
if(cod == 1 && x != y)
{
a = findd(x, t);
b = findd(y, t);
if(a != b) unionn(a, b, t);
}
else if(cod == 2)
{
if(findd(x, t) == findd(y, t))
fout << "DA\n";
else fout << "NU\n";
}
}
}
void graf :: bellman_ford(bool &circuit, vector<int> &d, queue<int> &coada_noduri, vector<bool>& in_coada, vector<int> &contor)
{
int k, v, c;
while(!coada_noduri.empty())
{
k = coada_noduri.front();
coada_noduri.pop();
in_coada[k] = false;
for(auto w : graf_cost[k])
{
v = w.first;
c = w.second;
if(d[v] > d[k] + c)
{
d[v] = d[k] + c;
if(!in_coada[v])
{
if(contor[v] > n)
{
circuit = true;
return;
}
else
{
coada_noduri.push(v);
in_coada[v] = true;
contor[v]++;
}
}
}
}
}
}
void graf :: pb_bellman_ford(int start)
{
bool circuit = false;
vector<int> d(nmax);
vector<bool> in_coada(nmax);
queue<int> coada_noduri;
vector<int> contor(nmax);
for (int i = 1; i <= n; i++)
d[i] = 1e9;
d[start] = 0; // de la nodul 1 plec
coada_noduri.push(start);
in_coada[start] = true;
bellman_ford(circuit, d, coada_noduri, in_coada, contor);
if(circuit)
{
fout << "Ciclu negativ!\n";
return;
}
for(int i = 1; i <= n; i++)
if(i != start)
fout << d[i] << " ";
fout << "\n";
}
///---------------------------------------------------------------------------------------------
void graf :: dfs_darb(int nod, int dist, vector<int> &d, bitset<nmax> &viz)
{
viz[nod] = true;
d[nod] = dist;
for(auto i : h[nod])
if(viz[i] == false)
dfs_darb(i, dist + 1, d, viz);
}
void graf :: darb()
{
int nod, mx;
vector<int> d(nmax);
bitset<nmax> viz;
for (int i = 1; i <= n; i++)
d[i] = 0;
dfs_darb(1, 1, d, viz);
mx = 0;
for(int i = 1; i <= n; i++)
if(viz[i] == true && d[i] > mx)
{
nod = i;
mx = d[i];
}
viz.reset();
dfs_darb(nod, 1, d, viz);
mx = 0;
for(int i = 1;i <= n; i++)
mx = max(mx, d[i]);
fout << mx << "\n";
}
void graf :: roy_floyd(vector< vector<int> > &d)
{
for(int k = 0; k < n; k++)
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
void graf :: pb_roy_floyd()
{
vector< vector<int> > d;
d.resize(n);
for(int i = 0; i < n; i++)
{
d[i].resize(n);
for(int j = 0; j < n; j++)
if(i == j)
d[i][j] = 0;
else if(matr[i][j] == 0)
d[i][j] = 1e9;
else d[i][j] = matr[i][j];
}
roy_floyd(d);
for(int i = 0; i < n; i++, fout << "\n")
for(int j = 0; j < n; j++)
if(d[i][j] == 1e9)
fout << "0 ";
else
fout << d[i][j] << " ";
}
bool graf :: bfs_ford_fulkerson(int start, int dest, vector< vector<int> > &rezidual, vector<int> &t)
{
queue<int> q;
vector<bool> viz;
viz.resize(n, false);
q.push(start);
viz[start] = true;
t[start] = -1;
while(!q.empty())
{
int nod = q.front();
q.pop();
for(int i = 0; i < n; i++)
{
if(!viz[i] && rezidual[nod][i] > 0)
{
if(i == dest)
{
t[i] = nod;
return true;
}
q.push(i);
t[i] = nod;
viz[i] = true;
}
}
}
return false;
}
int graf :: ford_fulkerson(int start, int dest, vector< vector<int> > &rezidual, vector<int> &t)
{
int nod, flux_temp, flux = 0;
while(bfs_ford_fulkerson(start, dest, rezidual, t))
{
flux_temp = 1e9;
nod = dest;
while(nod != start)
{
flux_temp = min(flux_temp, rezidual[t[nod]][nod]);
nod = t[nod];
}
nod = dest;
while(nod != start)
{
rezidual[t[nod]][nod] -= flux_temp;
rezidual[nod][t[nod]] += flux_temp;
nod = t[nod];
}
flux += flux_temp;
}
return flux;
}
void graf :: maxflow()
{
int flux;
vector< vector<int> > rezidual;
vector<int> t(n);
rezidual.resize(n);
for(int i = 0; i < n; i++)
{
rezidual[i].resize(n);
for(int j = 0; j < n; j++)
rezidual[i][j] = matr[i][j];
}
flux = ford_fulkerson(0, n - 1, rezidual, t);
fout << flux << "\n";
}
vector<int> graf :: ciclu_eulerian()
{
stack<int> st;
vector<int> sol;
int nod, v;
for(int i = 1; i <= n; i++)
if(h[i].size() % 2 == 1)
{
sol.push_back(-1);
return sol;
}
st.push(1);
while(!st.empty())
{
nod = st.top();
if(h[nod].size() > 0) //daca am vecini, sterg o muchie
{
v = h[nod][0];
h[nod].erase(h[nod].begin());
for(int w = 0; w < (int)h[v].size(); w++) // sterg pe nod din lista de vecini a lui v
{
if(h[v][w] == nod)
{
h[v].erase(h[v].begin() + w);
w = h[v].size() + 1; //break;
}
}
st.push(v);
}
else
{
st.pop();
sol.push_back(nod);
}
}
return sol;
}
void graf :: pb_ciclueuler()
{
vector<int> sol;
sol = ciclu_eulerian();
if(sol[0] == -1)
{
fout << "-1\n";
return;
}
for(int i = 1; i < (int)sol.size(); i++)
fout << sol[i] << " ";
fout << "\n";
}
int graf :: ciclu_hamiltonian()
{
int rez;
/// dp[i][j] = costul lantului de la 0 la j care contine nodurile din (binar i)
vector< vector<int> > dp;
dp.resize((1 << n));
for(int i = 0; i < (1 << n); i++)
{
dp[i].resize(n);
for(int j = 0; j < n; j++)
dp[i][j] = 1e9;
}
dp[1][0] = 0;
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
if(matr[i][j] == 0)
matr[i][j] = 1e9;
for(int i = 0; i < (1 << n); i++)
for(int j = 0; j < n; j++)
if((i & (1<<j)) != 0)
for(int k = 0; k < n; k++)
if(matr[j][k] != 0 && ((i & (1<<k)) != 0))
dp[i][j] = min(dp[i][j], dp[i ^ (1<<j)][k] + matr[k][j]);
rez = 1e9;
for(int i = 0; i < n; i++)
rez = min(rez, dp[(1 << n) - 1][i] + matr[i][0]);
return rez;
}
void graf :: pb_hamilton()
{
int rez;
rez = ciclu_hamiltonian();
if(rez == 1e9)
fout << "Nu exista solutie\n";
else
fout << rez << "\n";
}
graf g;
int main()
{
/// hamilton
int n, m, x, y, cost;
fin >> n >> m;
g.set_graf(n, m, true);
for(int i = 1; i <= m; i++)
{
fin >> x >> y >> cost;
g.adauga_muchie_matr(x, y, cost);
}
g.pb_hamilton();
/// ciclueuler
/*int n, m, x, y;
fin >> n >> m;
g.set_graf(n, m, false);
for(int i = 1; i <= m; i++)
{
fin >> x >> y;
g.adauga_muchie(x, y);
}
g.pb_ciclueuler();*/
/// maxflow
/*int n, m, x, y, cost;
fin >> n >> m;
g.set_graf(n, m, true);
for(int i = 1; i <= m; i++)
{
fin >> x >> y >> cost;
g.adauga_muchie_matr(x - 1, y - 1, cost);
}
g.maxflow();*/
/// royfloyd
/*int n, m=0, cost;
fin >> n;
g.set_graf(n, m, true);
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
{
fin >> cost;
g.adauga_muchie_matr(i, j, cost);
}
g.pb_roy_floyd();*/
/// darb
/*int n, m, x, y;
fin >> n;
m = n - 1;
g.set_graf(n, m, false);
for(int i = 1; i <= m; i++)
{
fin >> x >> y;
g.adauga_muchie(x,y);
}
g.darb();*/
/// bellmanford
/*int n, m, x, y, cost;
fin >> n >> m;
g.set_graf(n, m, true);
for(int i = 1; i <= m; i++)
{
fin >> x >> y >> cost;
g.adauga_muchie(x, y, cost);
}
g.pb_bellman_ford(1);*/
/// disjoint
/*int n, m;
fin >> n >> m;
g.set_graf(n, m, false);
g.disjoint();*/
/// dijkstra
/*int n, m, x, y, cost;
fin >> n >> m;
g.set_graf(n, m, true);
for(int i = 1; i <= m; i++)
{
fin >> x >> y >> cost;
g.adauga_muchie(x, y, cost);
}
g.pb_dijkstra(1);*/
/// apm
/*int n, m, x, y, cost;
fin >> n >> m;
g.set_graf(n, m, false);
for(int i = 1; i <= m; i++)
{
fin >> x >> y >> cost;
g.adauga_muchie(x, y, cost);
}
g.apm();*/
/// dfs
/*int n, m, x, y;
fin >> n >> m;
g.set_graf(n, m, false);
for(int i = 1; i <= m; i++)
{
fin >> x >> y;
g.adauga_muchie(x,y);
}
g.componente_conexe();*/
/// bfs
/*int n, m, s, x, y;
fin >> n >> m >> s;
g.set_graf(n, m, true);
for(int i = 1; i <= m; i++)
{
fin >> x >> y;
g.adauga_muchie(x,y);
}
g.distante(s);*/
/// biconex
/*int n, m, x, y;
fin >> n >> m;
g.set_graf(n, m, false);
for(int i = 1; i <= m; i++)
{
fin >> x >> y;
g.adauga_muchie(x,y);
}
g.componente_biconexe();*/
/// ctc
/*int n, m, x, y;
fin >> n >> m;
g.set_graf(n, m, true);
for(int i = 1; i <= m; i++)
{
fin >> x >> y;
g.adauga_muchie(x,y);
}
g.componente_tare_conexe();*/
/// sortare topologica
/*int n, m, s, x, y;
fin >> n >> m;
g.set_graf(n, m, true);
for(int i = 1; i <= m; i++)
{
fin >> x >> y;
g.adauga_muchie(x,y);
}
g.sortare_topologica();*/
/// havel hakimi
//graf::havel_hakimi();
/// muchii critice [[0,1],[1,2],[2,0],[1,3]]
//graf::criticalConnections(..);
fin.close();
fout.close();
return 0;
}