Pagini recente » Cod sursa (job #1450680) | Cod sursa (job #2838008) | Cod sursa (job #1137485) | Cod sursa (job #427807) | Cod sursa (job #2808888)
#include <fstream>
#include <climits>
#include <queue>
#include <vector>
#define NMAX 50005
using namespace std;
int n, m;
int dist[NMAX];
//inqueue semnifica daca nodul este pt vizitare
bool inQueue[NMAX];
//lista de adiacenta
vector <pair <int, int> > la[NMAX];
//Pentru comparator, m-am inspirat de pe stackoverflow
bool cmp(int x, int y){
return dist[x] > dist[y];
}
priority_queue <int, vector <int>, decltype(&cmp)> q(cmp);
void dijkstra(int start){
//initializare
for(int i = 1; i <= n; ++i){
dist[i] = INT_MAX;
inQueue[i] = false;
}
//bagam in coada
dist[start] = 0;
q.push(start);
inQueue[start] = true;
//cat timp avem noduri de vizitat, adica coada nu e goala
while(!q.empty()){
//scoatem nodul din coada
int nod = q.top();
q.pop();
inQueue[nod] = false;
//parcurgem vecinii nodului
for(unsigned int i = 0; i < la[nod].size(); ++i){
int v = la[nod][i].first;
int c = la[nod][i].second;
//verificam daca putem obtine un cost mai bun
//de la nodul curent spre vecinii lui
if(dist[nod] + c < dist[v]){
dist[v] = dist[nod] + c;
//daca nodul nu este in coada, il adaugam
if(!inQueue[v]){
q.push(v);
inQueue[v] = true;
}
}
}
}
}
int main()
{
ifstream f("dijkstra.in");
ofstream g("dijkstra.out");
f >> n >> m;
for(int i = 0; i < m; ++i){
int a, b, c;
f >> a >> b >> c;
la[a].push_back(make_pair(b, c));
}
dijkstra(1);
//incepem de la 2 sa nu afisam primul distanta de la primul nod la el insusi, care e 0.
for(int i = 2; i <= n; ++i){
if(dist[i] != INT_MAX){
g << dist[i] << " ";
}
else{
g << 0 << " ";
}
}
return 0;
}