Pagini recente » Cod sursa (job #1014902) | Cod sursa (job #2797184) | Cod sursa (job #1817501) | Cod sursa (job #2047144) | Cod sursa (job #2795813)
#include <fstream>
#include <iostream>
#include <vector>
#include <queue>
#include <stack>
using namespace std;
ifstream fin("biconex.in");
ofstream fout("biconex.out");
class Graph {
int n; //nr de noduri
int m; //nr de muchii
vector < vector < int > > neighbors; //vector ce contine cate un vector cu vecini pt fiecare nod
bool oriented; // variabiabila pt a verifca daca e orientat
bool from1; // variabila pt a verifica daca nodurile sunt numerotate de la 1
public:
//constructori:
Graph(int, bool, bool);
Graph(int, int, bool, bool);
void insert_edge(int, int); //functie pt a insera muchii
vector < int > bfs(int); //functie pt a afla distantele minime de la un nod la celelate
int connected_comp(); //functie pt a afla nr de componente conexe
void dfs(int, vector < bool > & ); //functie pt parcurgerea in adancime a unei componente
vector < vector < int > > biconnected_comp(); //functie pt a afla nr de componente biconexe
void biconnected_dfs(int, int, vector < int > & , vector < int > & , stack < int > & , vector < vector < int > > & ); //functie pt parcurgerea in adancime
};
Graph::Graph(int n, bool oriented = false, bool from1 = false) {
this -> n = n;
m = 0;
this -> from1 = from1;
this -> oriented = oriented;
for (int i = 0; i < n; i++) {
vector < int > aux;
neighbors.push_back(aux);
}
}
Graph::Graph(int n, int m, bool oriented = false, bool from1 = false) {
this -> n = n;
this -> m = m;
this -> from1 = from1;
this -> oriented = oriented;
for (int i = 0; i < n; i++) {
vector < int > aux;
neighbors.push_back(aux);
}
}
void Graph::insert_edge(int x, int y) {
if (from1) {
neighbors[x - 1].push_back(y - 1);
if (!oriented)
neighbors[y - 1].push_back(x - 1);
} else {
neighbors[x].push_back(y);
if (!oriented)
neighbors[y].push_back(x);
}
}
vector < int > Graph::bfs(int x) {
vector < int > dist; //vector pt a memora distantele
queue < int > aux; //coada ce retine nodurile ce trebuie explorate
for (int i = 0; i < n; i++)
//nodurile nevizitate primesc distanta -1:
dist.push_back(-1);
if (from1)
x--;
aux.push(x);
dist[x] = 0;
while (!aux.empty()) {
for (int i = 0; i < neighbors[aux.front()].size(); i++) {
//verificam daca nodurile vecine cu cel din varful cozii nu au fost vizitate:
if (dist[neighbors[aux.front()][i]] == -1) {
//retinem distanta:
dist[neighbors[aux.front()][i]] = dist[aux.front()] + 1;
//adaugam nodul vizitat in coada:
aux.push(neighbors[aux.front()][i]);
}
}
//trecem la urmatorul nod ce trebuie explorat:
aux.pop();
}
return dist;
}
int Graph::connected_comp() {
int nr = 0; //variabila pt a memora nr de componente conexe
vector < bool > visited; // vector care verifica daca nodurile au fost vizitate
for (int i = 0; i < n; i++)
visited.push_back(false);
for (int i = 0; i < n; i++) {
if (visited[i] == false) {
nr++;
//facem parcurgere in adancime pt a vizita toate nodurile componentei conexe:
dfs(i, visited);
}
}
return nr;
}
void Graph::dfs(int x, vector < bool > & visited) {
visited[x] = true;
for (int i = 0; i < neighbors[x].size(); i++)
if (visited[neighbors[x][i]] == false)
dfs(neighbors[x][i], visited);
}
vector < vector < int > > Graph::biconnected_comp() {
vector < int > lvl;
vector < int > min_lvl;
stack < int > nodes;
vector < vector < int > > components;
for (int i = 0; i < n; i++) {
lvl.push_back(-1);
min_lvl.push_back(-1);
}
for (int i = 0; i < n; i++) {
if (lvl[i] < 0) {
biconnected_dfs(i, 0, lvl, min_lvl, nodes, components);
if (!nodes.empty()) {
vector < int > aux;
while (!nodes.empty()) {
aux.push_back(nodes.top());
nodes.pop();
}
aux.push_back(i);
components.push_back(aux);
}
}
}
return components;
}
void Graph::biconnected_dfs(int x, int current_lvl, vector < int > & lvl, vector < int > & min_lvl, stack < int > & nodes, vector < vector < int > > & components) {
lvl[x] = current_lvl;
min_lvl[x] = current_lvl;
int children = 0;
for (int i = 0; i < neighbors[x].size(); i++) {
if (lvl[neighbors[x][i]] < 0) {
children++;
nodes.push(neighbors[x][i]);
biconnected_dfs(neighbors[x][i], current_lvl + 1, lvl, min_lvl, nodes, components);
min_lvl[x] = min(min_lvl[x], min_lvl[neighbors[x][i]]);
if ((lvl[x] == 0 && children > 1) || (lvl[x] > 0 && lvl[x] <= min_lvl[neighbors[x][i]])) {
vector < int > aux;
while (nodes.top() != neighbors[x][i]) {
aux.push_back(nodes.top());
nodes.pop();
}
nodes.pop();
aux.push_back(neighbors[x][i]);
aux.push_back(x);
components.push_back(aux);
}
} else
min_lvl[x] = min(min_lvl[x], lvl[neighbors[x][i]]);
}
}
int main() {
int n, m, a, b;
fin >> n >> m;
Graph g(n, m, false, true);
for (int i = 0; i < m; i++) {
fin >> a >> b;
g.insert_edge(a, b);
}
vector < vector < int > > aux;
aux = g.biconnected_comp();
fout << aux.size() << '\n';
for (int i = 0; i < aux.size(); i++) {
for (int j = 0; j < aux[i].size(); j++)
fout << aux[i][j] + 1 << " ";
fout << '\n';
}
}