Pagini recente » Cod sursa (job #2276908) | Cod sursa (job #2617230) | Cod sursa (job #611320) | Cod sursa (job #2921396) | Cod sursa (job #2795799)
#include <fstream>
#include <iostream>
#include <vector>
#include <queue>
#include <stack>
using namespace std;
ifstream fin("biconex.in");
ofstream fout("biconex.out");
class Graph
{
int n; //nr de noduri
int m; //nr de muchii
vector<vector<int> > neighbors; //vector ce contine cate un vector cu vecini pt fiecare nod
bool oriented; // variabiabila pt a verifca daca e orientat
bool from1; // variabila pt a verifica daca nodurile sunt numerotate de la 1
public:
//constructori:
Graph(int, bool, bool);
Graph(int, int, bool, bool);
void insert_edge(int, int); //functie pt a insera muchii
vector<int> bfs(int); //functie pt a afla distantele minime de la un nod la celelate
int connected_comp(); //functie pt a afla nr de componente conexe
void dfs(int, vector<bool> &); //functie pt parcurgerea in adancime a unei componente
vector<vector<int> > biconnected_comp(); //functie pt a afla nr de componente biconexe
void biconnected_dfs(int, int, vector<int> &, vector<int> &, stack<int> &, vector<vector<int> > &); //functie pt parcurgerea in adancime
};
Graph::Graph(int n, bool oriented = false, bool from1 = false)
{
this->n = n;
m = 0;
this->from1 = from1;
this->oriented = oriented;
for (int i = 0; i < n; i++)
{
vector<int> aux;
neighbors.push_back(aux);
}
}
Graph::Graph(int n, int m, bool oriented = false, bool from1 = false)
{
this->n = n;
this->m = m;
this->from1 = from1;
this->oriented = oriented;
for (int i = 0; i < n; i++)
{
vector<int> aux;
neighbors.push_back(aux);
}
}
void Graph::insert_edge(int x, int y)
{
if (from1)
{
neighbors[x - 1].push_back(y - 1);
if (!oriented)
neighbors[y - 1].push_back(x - 1);
}
else
{
neighbors[x].push_back(y);
if (!oriented)
neighbors[y].push_back(x);
}
}
vector<int> Graph::bfs(int x)
{
vector<int> dist; //vector pt a memora distantele
queue<int> aux; //coada ce retine nodurile ce trebuie explorate
for (int i = 0; i < n; i++)
//nodurile nevizitate primesc distanta -1:
dist.push_back(-1);
if (from1)
x--;
aux.push(x);
dist[x] = 0;
while (!aux.empty())
{
for (int i = 0; i < neighbors[aux.front()].size(); i++)
{
//verificam daca nodurile vecine cu cel din varful cozii nu au fost vizitate:
if (dist[neighbors[aux.front()][i]] == -1)
{
//retinem distanta:
dist[neighbors[aux.front()][i]] = dist[aux.front()] + 1;
//adaugam nodul vizitat in coada:
aux.push(neighbors[aux.front()][i]);
}
}
//trecem la urmatorul nod ce trebuie explorat:
aux.pop();
}
return dist;
}
int Graph::connected_comp()
{
int nr = 0; //variabila pt a memora nr de componente conexe
vector<bool> visited; // vector care verifica daca nodurile au fost vizitate
for (int i = 0; i < n; i++)
visited.push_back(false);
for (int i = 0; i < n; i++)
{
if (visited[i] == false)
{
nr++;
//facem parcurgere in adancime pt a vizita toate nodurile componentei conexe:
dfs(i, visited);
}
}
return nr;
}
void Graph::dfs(int x, vector<bool> &visited)
{
visited[x] = true;
for (int i = 0; i < neighbors[x].size(); i++)
if (visited[neighbors[x][i]] == false)
dfs(neighbors[x][i], visited);
}
vector<vector<int> > Graph::biconnected_comp()
{
vector<int> lvl; //vector cu nivelurile nodurile din dfs
vector<int> min_lvl; //vector cu nivelurile minime la care poate ajunge un nod din dfs prin muchie de intoarcere
stack<int> nodes; //stiva in care memoram nodurile vizitate
vector<vector<int> > components; //vector cu componentele biconexe
for (int i = 0; i < n; i++)
{
lvl.push_back(-1);
min_lvl.push_back(-1);
}
for (int i = 0; i < n; i++)
{
if (lvl[i] < 0)
{
biconnected_dfs(i, 0, lvl, min_lvl, nodes, components);
//dupa ce terminam dfs-ul, daca mai avem noduri in stiva, ele formeaza inca o componenta biconexa:
if (!nodes.empty())
{
vector<int> aux;
while (!nodes.empty())
{
aux.push_back(nodes.top());
nodes.pop();
}
aux.push_back(i);
components.push_back(aux);
}
}
}
return components;
}
void Graph::biconnected_dfs(int x, int current_lvl, vector<int> &lvl, vector<int> &min_lvl, stack<int> &nodes, vector<vector<int> > &components)
{
lvl[x] = current_lvl;
min_lvl[x] = current_lvl;
int children = 0; //variabila ce retine numar de copii al nodului
for (int i = 0; i < neighbors[x].size(); i++)
{
if (lvl[neighbors[x][i]] < 0)
{
children++;
nodes.push(neighbors[x][i]);
biconnected_dfs(neighbors[x][i], current_lvl + 1, lvl, min_lvl, nodes, components);
min_lvl[x] = min(min_lvl[x], min_lvl[neighbors[x][i]]);
//daca nodul curent este radacina si are mai mult de un nod fiu
//sau daca are un nod fiu care nu se poate intoarce la un nivel mai mic decat cel al nodului tata prin muchie de intoarcere
//inseamna ca nodul curent este punct de articulatie
if ((lvl[x] == 0 && children > 1) || (lvl[x] > 0 && lvl[x] <= min_lvl[neighbors[x][i]]))
{
vector<int> aux; //variabila in care adaugam toate nodurile din componenta biconexa curenta(nodurile adaugate dupa punctul de articulatie)
while (nodes.top() != neighbors[x][i])
{
aux.push_back(nodes.top());
nodes.pop();
}
nodes.pop();
aux.push_back(neighbors[x][i]);
aux.push_back(x);
components.push_back(aux);
}
}
else //intre noduri e muchie de intoarcere
min_lvl[x] = min(min_lvl[x], lvl[neighbors[x][i]]);
}
}
int main()
{
int n, m, a, b;
fin >> n >> m;
Graph g(n, m, false, true);
for (int i = 0; i < m; i++)
{
fin >> a >> b;
g.insert_edge(a, b);
}
vector<vector<int> > aux;
aux = g.biconnected_comp();
fout << aux.size() << '\n';
for (int i = 0; i < aux.size(); i++)
{
for (int j = 0; j < aux[i].size(); j++)
fout << aux[i][j] + 1 << " ";
fout << '\n';
}
}