Pagini recente » Cod sursa (job #2487517) | Cod sursa (job #1987214) | Cod sursa (job #1982117) | Cod sursa (job #2287637) | Cod sursa (job #2793219)
#include <iostream>
#include <algorithm>
#include <fstream>
#include <vector>
#include <queue>
using namespace std;
ifstream fin("apm.in");
ofstream fout("apm.out");
class graph{
vector< vector < int > > Ad;
const int nodes;
int edges = 0;
struct disjoint_set{
int parent, sz;
};
struct edge{
int x, y, c;
bool operator < ( const edge & E ) {
return c < E.c;
}
};
int Find( vector < disjoint_set > & ds, int x);
void Union(vector < disjoint_set > & ds, int x, int y);
public:
graph( int n):nodes(n){ Ad.resize(nodes+1); }
graph( int n, int m, vector < vector < int > > & ad ) : nodes(n), edges(m){
Ad.resize(nodes+1);
for( int i = 1; i <= edges; ++i ){
for( int j = 0; j < ad[i].size(); ++i)
Ad[i].push_back(ad[i][j]);
}
}
void addEdge(int x, int y, bool oriented);
void DFS( int nod, bool vis[] );
void BFS( int nod );
int ConnectedComponents();
void Kruskal();
};
void graph::addEdge(int x, int y, bool oriented){
Ad[x].push_back( y );
if( oriented == false )
Ad[y].push_back(x);
edges++;
}
void graph::DFS( int nod, bool vis[] ){
vis[nod] = 1;
for( int i = 0; i < Ad[nod].size(); ++i ){
int w = Ad[nod][i];
if( vis[w] == 0 )DFS(w,vis);
}
}
void graph::BFS( int nod ){
queue < int > Q;
int dist[nodes] = {0};
Q.push(nod);
int x;
while( !Q.empty() ){
x = Q.front();
Q.pop();
for( int i = 0; i < Ad[x].size(); ++i ){
int w = Ad[x][i];
if( dist[w] == 0 && w != x && w != nod ){
dist[w] = dist[x] + 1;
Q.push(w);
}
}
}
for( int i = 1; i <= nodes; ++i )
if( dist[i] != 0 || i == nod )fout << dist[i] << ' ';
else fout << "-1 ";
}
int graph::ConnectedComponents(){
int nr = 0;
bool vis[nodes] = {0};
for( int i = 1; i <= nodes; ++i )
if( vis[i] == 0 ){
DFS(i,vis);
nr++;
}
return nr;
}
int graph::Find( vector < disjoint_set > & ds, int x){
int aux, root = x;
while( ds[root].parent != root ) root = ds[root].parent;
while( ds[x].parent != x ){
aux = ds[x].parent;
ds[x].parent = root;
x = aux;
}
return root;
}
void graph::Union(vector < disjoint_set > & ds, int x, int y){
int root_x = Find(ds,x);
int root_y = Find(ds,y);
if( ds[root_x].sz >= ds[root_y].sz ){
ds[root_x].sz += ds[root_y].sz;
ds[root_y].parent = root_x;
}
else{
ds[root_y].sz += ds[root_x].sz;
ds[root_x].parent = root_y;
}
}
void graph::Kruskal(){
vector < disjoint_set > disjoint_sets;
vector < edge > E;
int M;
fin >> M;
int x, y, c;
disjoint_sets.resize(nodes+1);
for( int i = 1; i <= nodes; ++i )
disjoint_sets[i] = {i,1};
for( int i = 1; i <= M; ++i ){
fin >> x >> y >> c;
E.push_back({x,y,c});
}
sort( E.begin(), E.end() );
vector < pair < int , int > > Sol;
int C = 0, edges_nr = 0;
for( int i = 0; i < M && edges_nr < nodes; ++i ){
int root_x = Find(disjoint_sets, E[i].x);
int root_y = Find(disjoint_sets, E[i].y);
if( root_x != root_y ){
edges_nr++;
Sol.push_back( {E[i].x, E[i].y} );
C += E[i].c;
Union(disjoint_sets, root_x, root_y );
}
}
fout << C << '\n';
fout << Sol.size() << '\n';
for( int i = 0; i < Sol.size(); ++i )
fout << Sol[i].first << ' ' << Sol[i].second << '\n';
}
int main()
{
int N;
fin >> N;
graph G(N);
G.Kruskal();
return 0;
}