// g++ -std=c++17 -DLOCAL a.cpp -o ex && ./ex >tst.out 2>&1
#include <bits/stdc++.h>
using namespace std;
template <typename A, typename B>
string to_string(pair<A, B> p);
template <typename A, typename B, typename C>
string to_string(tuple<A, B, C> p);
template <typename A, typename B, typename C, typename D>
string to_string(tuple<A, B, C, D> p);
string to_string(const string& s) {
return '"' + s + '"';
}
string to_string(const char* s) {
return to_string((string) s);
}
string to_string(bool b) {
return (b ? "true" : "false");
}
string to_string(vector<bool> v) {
bool first = true;
string res = "{";
for (int i = 0; i < static_cast<int>(v.size()); i++) {
if (!first) {
res += ", ";
}
first = false;
res += to_string(v[i]);
}
res += "}";
return res;
}
template <size_t N>
string to_string(bitset<N> v) {
string res = "";
for (size_t i = 0; i < N; i++) {
res += static_cast<char>('0' + v[i]);
}
return res;
}
template <typename A>
string to_string(A v) {
bool first = true;
string res = "{";
for (const auto &x : v) {
if (!first) {
res += ", ";
}
first = false;
res += to_string(x);
}
res += "}";
return res;
}
template <typename A, typename B>
string to_string(pair<A, B> p) {
return "(" + to_string(p.first) + ", " + to_string(p.second) + ")";
}
template <typename A, typename B, typename C>
string to_string(tuple<A, B, C> p) {
return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ")";
}
template <typename A, typename B, typename C, typename D>
string to_string(tuple<A, B, C, D> p) {
return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ", " + to_string(get<3>(p)) + ")";
}
void debug_out() { cerr << " "; }
void debug_out_nl() { cerr << endl; }
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
cerr << " " << to_string(H);
debug_out(T...);
}
template <typename Head, typename... Tail>
void debug_out_nl(Head H, Tail... T) {
cerr << " " << to_string(H);
debug_out_nl(T...);
}
#ifdef LOCAL
#define dbg(...) cerr << "#" << #__VA_ARGS__ << ":", debug_out(__VA_ARGS__)
#define nl(...) cerr << "#" << #__VA_ARGS__ << ":", debug_out_nl(__VA_ARGS__)
#else
#define dbg(...) 69
#define nl(...) 42
#endif
#define ll long long
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
ll random(ll st, ll dr) {
assert(st <= dr);
return st + rng() % (dr - st + 1);
}
template<typename T>
struct Edge {
int from;
int to;
T cap;
T flow;
Edge(int _from, int _to, T _cap) : from(_from), to(_to), cap(_cap), flow(0) {}
T resCap() {
return cap - flow; // residual capacity
}
};
template<typename T>
struct Dinic {
static const T INF = INT_MAX; // Change
bool isDirected;
int source;
int sink;
vector<Edge<T>> edges;
vector<vector<int> > v;
vector<int> level;
vector<int> lst;
int N;
int M;
T computedMaxFlow;
bool isComputed;
Dinic(bool _isDirected, int _source, int _sink, int _N) : isDirected(_isDirected), source(_source), sink(_sink), v(_N), level(_N), lst(_N), N(_N), M(0), isComputed(false) {}
void addEdge(int from, int to, T cap) {
/*
Pentru o muchie intre x, y, c apelam o singura data addEdge(x, y, c)
*/
edges.push_back(Edge(from, to, cap));
edges.push_back(Edge(to, from, (isDirected ? 0 : cap)));
v[from].push_back(M++);
v[to].push_back(M++);
}
bool canPush() {
queue<int> q;
fill(level.begin(), level.end(), -1);
level[source] = 0;
q.push(source);
while (!q.empty()) {
int node = q.front();
q.pop();
if (node == sink) {
return true;
}
for (auto edgeId : v[node]) {
int nxt = edges[edgeId].to;
if (level[nxt] == -1) {
if (edges[edgeId].resCap() > 0) {
level[nxt] = level[node] + 1;
q.push(nxt);
}
}
}
}
return false;
}
T push(int node, T pushedFlow) {
if (pushedFlow == 0) {
return 0;
}
if (node == sink) {
return pushedFlow;
}
for (; lst[node] < v[node].size(); lst[node]++) {
int edgeId = v[node][lst[node]];
int nxt = edges[edgeId].to;
T resCap = edges[edgeId].resCap();
if (level[nxt] != level[node] + 1 || resCap <= 0) {
continue;
}
T flow = push(nxt, min(pushedFlow, resCap));
if (flow == 0) {
continue;
}
edges[edgeId].flow += flow;
edges[edgeId ^ 1].flow -= flow;
return flow;
}
return 0;
}
T maxFlow() {
if (isComputed) {
return computedMaxFlow;
}
T flow = 0;
while (canPush()) {
fill(lst.begin(), lst.end(), 0);
while (1) {
T pushedFlow = push(source, INF);
if (pushedFlow <= 0) {
break;
}
flow += pushedFlow;
}
}
isComputed = true;
computedMaxFlow = flow;
return computedMaxFlow;
}
};
const int MOD = 1e9 + 7;
const int N = 2e5 + 10;
void solve(int test, istream &cin, ostream &cout) {
int n, m;
cin >> n >> m;
Dinic<int> graph(true, 1, n, n + 1);
for (int i = 1, x, y, c; i <= m; i++) {
cin >> x >> y >> c;
graph.addEdge(x, y, c);
}
cout << graph.maxFlow();
// cerr << "Time elapsed :" << clock() * 1000.0 / CLOCKS_PER_SEC << " ms" << '\n';
}
int main() {
ifstream cin("maxflow.in");
ofstream cout("maxflow.out");
ios_base::sync_with_stdio(0);
cin.tie(NULL);
bool multiTest = false;
int t;
if (multiTest) {
cin >> t;
} else {
t = 1;
}
for (int test = 1; test <= t; test++) {
solve(test, cin, cout);
}
return 0;
}