Pagini recente » Borderou de evaluare (job #2842731) | Cod sursa (job #459910) | Cod sursa (job #1081136) | Borderou de evaluare (job #216904) | Cod sursa (job #2711310)
// solutie de 70p cu binary lifting
#include <bits/stdc++.h>
#define fi first
#define se second
#define ll long long
using namespace std;
ifstream in("lca.in");
ofstream out("lca.out");
const int LOG = 17;
const int N = 1e5 + 5;
int n, m;
// dad[i][j] -> al 2^j lea parinte in sus pentru nodul i, dad[i][0] este parintele direct al lui i
int dad[N][18];
int depth[N];
vector<int> v[N];
void dfs(int node, int dad = 0) {
depth[node] = depth[dad] + 1;
for (auto child : v[node]) {
if (!depth[child]) {
dfs(child, node);
}
}
}
void build_ancestors() {
for (int bit = 1; bit < LOG; bit++) {
for (int node = 1; node <= n; node++) {
dad[node][bit] = dad[dad[node][bit - 1]][bit - 1];
}
}
}
int get_lca(int x, int y) {
if (depth[x] < depth[y]) {
swap(x, y);
}
for (int bit = LOG; bit >= 0; bit--) {
if ((1 << bit) & (depth[x] - depth[y])) {
x = dad[x][bit];
}
}
for (int bit = LOG; bit >= 0; bit--) {
if (dad[x][bit] != dad[y][bit]) {
x = dad[x][bit];
y = dad[y][bit];
}
}
return (x == y ? x : dad[x][0]);
}
int main() {
in >> n >> m;
for (int i = 2, x; i <= n; i++) {
in >> x;
dad[i][0] = x;
v[x].push_back(i);
}
dfs(1);
build_ancestors();
for (int x, y; m--; ) {
in >> x >> y;
out << get_lca(x, y) << '\n';
}
return 0;
}