#include <fstream>
#include <vector>
using namespace std;
ifstream f("heavypath.in");
ofstream g("heavypath.out");
const int NMAX = 1e5 + 5;
const int ROOT = 1;
int N, Q, A[NMAX];
vector < int > G[NMAX];
///
int M = 0;
int father[NMAX], W[NMAX], Max_Son[NMAX];
int chain[NMAX], pos[NMAX];
int how_many[NMAX];
int First[NMAX], Level[NMAX];
///
static inline int my_min (int a, int b)
{
return ((a < b) ? a : b);
}
static inline int my_max (int a, int b)
{
return ((a > b) ? a : b);
}
static inline void my_swap (int &x, int &y)
{
x = (x ^ y), y = (x ^ y), x = (x ^ y);
return;
}
class SegmentTree
{
int *V;
public:
inline void Initialize (int N)
{
V = new int [((N << 2) + 1)];
for(int i = 1; i <= (N << 2); ++i)
V[i] = 0;
return;
}
inline void Update (int Node, int a, int b, int pos, int Val)
{
if(a == b)
{
V[Node] = Val;
return;
}
int Mid = ((a + b) >> 1);
if(pos <= Mid)
Update((Node << 1), a, Mid, pos, Val);
if(pos > Mid)
Update(((Node << 1) + 1), Mid + 1, b, pos, Val);
V[Node] = my_max(V[(Node << 1)], V[((Node << 1) + 1)]);
return;
}
inline int Query (int Node, int a, int b, int qa, int qb)
{
if(qa <= a && b <= qb)
return V[Node];
int Mid = ((a + b) >> 1);
int p_Left = 0, p_Right = 0;
if(qa <= Mid)
p_Left = Query((Node << 1), a, Mid, qa, qb);
if(qb > Mid)
p_Right = Query(((Node << 1) + 1), Mid + 1, b, qa, qb);
return my_max(p_Left, p_Right);
}
} AINT[NMAX];
static inline void Read ()
{
f.tie(nullptr);
f >> N >> Q;
for(int i = 1; i <= N; ++i)
f >> A[i];
for(int i = 1; i < N; ++i)
{
int X = 0, Y = 0;
f >> X >> Y;
G[X].push_back(Y), G[Y].push_back(X);
}
return;
}
static inline void DFS (int Node, int from = -1, int lvl = 1)
{
father[Node] = from;
W[Node] = 1;
Max_Son[Node] = -1;
Level[Node] = lvl;
for(auto it : G[Node])
if(it != from)
{
DFS(it, Node, lvl + 1);
if(Max_Son[Node] == -1 || (Max_Son[Node] > 0 && W[it] > W[Max_Son[Node]]))
Max_Son[Node] = it;
W[Node] += W[it];
}
return;
}
static inline void Go (int Node, int from = -1)
{
chain[Node] = M;
pos[Node] = ++how_many[M];
if(how_many[M] == 1)
First[M] = Node;
if(Max_Son[Node] == -1)
return;
Go(Max_Son[Node], Node);
for(auto it : G[Node])
if(it != from && it != Max_Son[Node])
++M, Go(it, Node);
return;
}
static inline void Initialize ()
{
for(int i = 1; i <= M; ++i)
AINT[i].Initialize(how_many[i]);
for(int i = 1; i <= N; ++i)
AINT[chain[i]].Update(1, 1, how_many[chain[i]], pos[i], A[i]);
return;
}
static inline void Precalculation ()
{
DFS(ROOT);
M = 1, Go(ROOT);
Initialize();
return;
}
static inline int Query (int X, int Y)
{
if(chain[X] == chain[Y])
return AINT[chain[X]].Query(1, 1, how_many[chain[X]], my_min(pos[X], pos[Y]), my_max(pos[X], pos[Y]));
if(Level[First[chain[X]]] > Level[First[chain[Y]]])
my_swap(X, Y);
int p_1 = Query(Y, First[chain[Y]]);
int p_2 = Query(father[First[chain[Y]]], X);
return my_max(p_1, p_2);
}
static inline void TestCase ()
{
int Type = 0, X = 0, Y = 0;
f >> Type >> X >> Y;
if(Type == 0)
{
AINT[chain[X]].Update(1, 1, how_many[chain[X]], pos[X], Y);
return;
}
g << Query(X, Y) << '\n';
return;
}
static inline void Solve ()
{
while(Q--)
TestCase();
return;
}
int main()
{
Read();
Precalculation();
Solve();
return 0;
}