Cod sursa(job #2631282)

Utilizator Alex_tz307Lorintz Alexandru Alex_tz307 Data 29 iunie 2020 17:30:23
Problema Plantatie Scor 100
Compilator cpp-64 Status done
Runda Arhiva de probleme Marime 2.51 kb
#include <bits/stdc++.h>
#define log(x) 31-__builtin_clz(x)

using namespace std;

class InParser {
private:
	FILE *fin;
	char *buff;
	int sp;
	char read_ch() {
		++sp;
		if (sp == 4096) {
			sp = 0;
			fread(buff, 1, 4096, fin);
		}
		return buff[sp];
	}
public:
	InParser(const char* nume) {
		fin = fopen(nume, "r");
		buff = new char[4096]();
		sp = 4095;
	}
	InParser& operator >> (int &n) {
		char c;
		while (!isdigit(c = read_ch()) && c != '-');
		int sgn = 1;
		if (c == '-') {
			n = 0;
			sgn = -1;
		} else {
			n = c - '0';
		}
		while (isdigit(c = read_ch())) {
			n = 10 * n + c - '0';
		}
		n *= sgn;
		return *this;
	}
};

class OutParser {
private:
    FILE *fout;
    char *buff;
    int sp;
    void write_ch(char ch) {
        if (sp == 50000) {
            fwrite(buff, 1, 50000, fout);
            sp = 0;
            buff[sp++] = ch;
        } else {
            buff[sp++] = ch;
        }
    }
public:
    OutParser(const char* name) {
        fout = fopen(name, "w");
        buff = new char[50000]();
        sp = 0;
    }
    ~OutParser() {
        fwrite(buff, 1, sp, fout);
        fclose(fout);
    }
    OutParser& operator << (int vu32) {
        if (vu32 <= 9) {
            write_ch(vu32 + '0');
        } else {
            (*this) << (vu32 / 10);
            write_ch(vu32 % 10 + '0');
        }
        return *this;
    }
    OutParser& operator << (char ch) {
        write_ch(ch);
        return *this;
    }
    OutParser& operator << (const char *ch) {
        while (*ch) {
            write_ch(*ch);
            ++ch;
        }
        return *this;
    }
};

InParser fin ("plantatie.in");
OutParser fout ("plantatie.out");

int N, M, rmq[10][512][512];

int main () {
  fin >> N >> M;
  for (int i = 0; i < N; i ++)
    for (int j = 0; j < N; j ++)
      fin >> rmq[0][i][j];
  for (int k = 1; (1 << k) <= N; k ++)
    for (int i = 0; i + (1 << k) <= N; i ++)
      for (int j = 0; j + (1 << k) <= N; j ++)
        rmq[k][i][j] = max (max (rmq[k - 1][i][j], rmq[k - 1][i][j + (1 << (k - 1))]),
                            max (rmq[k - 1][i + (1 << (k - 1))][j], rmq[k - 1][i + (1 << (k - 1))][j + (1 << (k - 1))]));
  while (M --) {
    int i, j, k;
    fin >> i >> j >> k;
    i --, j --;
    int lg = log(k);
    fout << max (max (rmq[lg][i][j], rmq[lg][i][j - (1 << lg) + k]),
                 max (rmq[lg][i - (1 << lg) + k][j], rmq[lg][i - (1 << lg) + k][j - (1 << lg) + k])) << '\n';
  }
  return 0;
}