#include <fstream>
#include <vector>
using namespace std;
ifstream f("heavypath.in");
ofstream g("heavypath.out");
const int NMAX = 1e5 + 5, ROOT = 1;
int N, Q;
vector < int > G[NMAX];
int W[NMAX], Max_Son[NMAX];
int M = 1;
int Chain[NMAX], Level[NMAX], First[NMAX], Pos[NMAX], Size[NMAX], father[NMAX];
int A[NMAX];
class SegmentTree
{
vector < int > A;
public:
inline void Initialize (int N)
{
int Needed = (N << 1);
for(int i = 1; i <= (Needed + 1); ++i)
A.push_back(0);
return;
}
inline void Update (int Node, int a, int b, int pos, int Val)
{
if(a == b)
{
A[Node] = Val;
return;
}
int Mid = (a + b) >> 1;
if(pos <= Mid)
Update(2 * Node, a, Mid, pos, Val);
if(pos > Mid)
Update(2 * Node + 1, Mid + 1, b, pos, Val);
A[Node] = max(A[2 * Node], A[2 * Node + 1]);
return;
}
inline int Query (int Node, int a, int b, int qa, int qb)
{
if(qa <= a && b <= qb)
return A[Node];
int Mid = (a + b) >> 1;
int p_Left = 0, p_Right = 0;
if(qa <= Mid)
p_Left = Query(2 * Node, a, Mid, qa, qb);
if(qb > Mid)
p_Right = Query(2 * Node + 1, Mid + 1, b, qa, qb);
return max(p_Left, p_Right);
}
} T[NMAX];
static inline void Read ()
{
f.tie(nullptr);
f >> N >> Q;
for(int i = 1; i <= N; ++i)
f >> A[i];
for(int i = 1; i < N; ++i)
{
int a = 0, b = 0;
f >> a >> b;
G[a].push_back(b);
G[b].push_back(a);
}
return;
}
static inline void DFS_1 (int Node, int From, int Lvl)
{
W[Node] = 1;
Max_Son[Node] = -1;
Level[Node] = Lvl;
father[Node] = From;
for(auto it : G[Node])
if(it != From)
{
DFS_1(it, Node, Lvl + 1);
W[Node] += W[it];
if(Max_Son[Node] == -1 || (Max_Son[Node] != -1 && W[it] > W[Max_Son[Node]]))
Max_Son[Node] = it;
}
return;
}
static inline void DFS_2 (int Node, int From)
{
Chain[Node] = M;
Pos[Node] = (++Size[M]);
if(Pos[Node] == 1)
First[M] = Node;
if(Max_Son[Node] == -1)
return;
DFS_2(Max_Son[Node], Node);
for(auto it : G[Node])
if(it == Max_Son[Node] || it == From)
continue;
else
{
++M;
DFS_2(it, Node);
}
return;
}
static inline void Precalculation ()
{
DFS_1(ROOT, 0, 1);
DFS_2(ROOT, 0);
for(int i = 1; i <= M; ++i)
T[i].Initialize(Size[i]);
for(int i = 1; i <= N; ++i)
T[Chain[i]].Update(1, 1, Size[Chain[i]], Pos[i], A[i]);
return;
}
static inline void Update (int X, int Val)
{
T[Chain[X]].Update(1, 1, Size[Chain[X]], Pos[X], Val);
return;
}
static inline int Query (int X, int Y)
{
if(Chain[X] == Chain[Y])
return T[Chain[X]].Query(1, 1, Size[Chain[X]], min(Pos[X], Pos[Y]), max(Pos[X], Pos[Y]));
if(Level[First[Chain[X]]] > Level[First[Chain[Y]]])
swap(X, Y);
return max(Query(Y, First[Chain[Y]]), Query(father[First[Chain[Y]]], X));
}
static inline void TestCase ()
{
int Type = 0;
f >> Type;
if(Type == 0)
{
int X = 0, Val = 0;
f >> X >> Val;
Update(X, Val);
return;
}
int X = 0, Y = 0;
f >> X >> Y;
g << Query(X, Y) << '\n';
return;
}
static inline void Solve ()
{
while(Q--)
TestCase();
return;
}
int main()
{
Read();
Precalculation();
Solve();
return 0;
}