Pagini recente » Cod sursa (job #2064474) | Cod sursa (job #1378541) | Cod sursa (job #554719) | Istoria paginii runda/urmasii_lui_taraban/clasament | Cod sursa (job #2612028)
#include <bits/stdc++.h>
#define infinit (1 << 30)
using namespace std;
const int kNmax = 50005;
const int kInf = 0x3f3f3f3f;
class Task {
public:
void solve() {
read_input();
print_output(get_result());
}
private:
int n;
int m;
int source;
vector<pair<int, int> > adj[kNmax];
vector<int> parent;
void read_input() {
source = 1;
ifstream fin("dijkstra.in");
fin >> n >> m;
parent.resize(n + 1);
for (int i = 1, x, y, w; i <= m; i++) {
fin >> x >> y >> w;
adj[x].push_back(make_pair(y, w));
}
fin.close();
}
vector<int> get_result() {
/*
TODO: Gasiti distantele minime de la nodul source la celelalte noduri
folosind Dijkstra pe graful orientat cu n noduri, m arce stocat in adj.
d[node] = costul minim / lungimea minima a unui drum de la source la nodul
node;
d[source] = 0;
d[node] = -1, daca nu se poate ajunge de la source la node.
Atentie:
O muchie este tinuta ca o pereche (nod adiacent, cost muchie):
adj[x][i].first = nodul adiacent lui x,
adj[x][i].second = costul.
*/
vector<int> d(n + 1, infinit); // distanta e infinit
priority_queue<pair<int, int>, vector<pair<int, int>>, std::greater<pair<int, int>>> pq;
d[source] = 0;
pq.push({d[source], source});
while (!pq.empty()) {
auto it = pq.top();
pq.pop();
int cost = it.first; // costu din heap
int currentNode = it.second; // nodul efectiv din heap
for (uint i = 0; i < adj[currentNode].size(); ++i) {
int nextNode = adj[currentNode][i].first; // urmatorul nod
int cost_edge = adj[currentNode][i].second; // costu pana la urmatorul nod
if (d[nextNode] > d[currentNode] + cost_edge) {
d[nextNode] = d[currentNode] + cost_edge;
parent[nextNode] = currentNode;
pq.push({d[nextNode], nextNode});
}
}
}
for (int i = 1; i <= n; ++i) {
if (d[i] == infinit) {
d[i] = -1;
}
}
return d;
}
std::vector<int> getRoad(int node) {
std::vector<int> path;
while (node != 0) {
path.push_back(node);
node = parent[node];
}
return path;
}
void print_output(vector<int> result) {
ofstream fout("dijkstra.out");
for (int i = 1; i <= n; i++) {
fout << result[i] << " ";
}
fout << "\n";
fout.close();
}
};
// Please always keep this simple main function!
int main() {
// Allocate a Task object on heap in order to be able to
// declare huge static-allocated data structures inside the class.
Task *task = new Task();
task->solve();
delete task;
return 0;
}