#include <bits/stdc++.h>
#define debug(x) cout << #x << " = " << x << endl
#define REP(i,n) for(Long i = 0; i < (Long)n; i++)
#define pb push_back
using namespace std;
typedef int Long;
const Long MX = 350;
const Long INF = 1e9;
struct Edge{
Long from , to, cap, flow, cost;
Edge(){}
Edge(Long from , Long to, Long cap, Long cost) : from(from) , to(to), cap(cap), flow(0), cost(cost) {}
};
struct Graph{
vector<Long> adj[MX];
Long cap[MX][MX];
Long cost[MX][MX];
Long flow[MX][MX];
Long parent[MX];
Long pot[MX];
vector<Edge> E;
void addEdge(Long u, Long v, Long w, Long c, bool dir){
adj[u].push_back(v);
adj[v].push_back(u);
cap[u][v] += w;
cost[u][v] = c;
cost[v][u] = -c;
E.pb(Edge(u , v , w, c));
}
void bellmanFord(Long s , Long t, Long n){ //O(nm)
vector<Long> d(n, INF);
d[s] = 0;
Long m = E.size();
Long negaCycle; //negative cycle flag
REP(i , n) {
negaCycle = -1;
REP ( j , m ) {
if (d[E[j].from] < INF && E[j].cap - E[j].flow > 0) {
if (d[E[j].to] > d[E[j].from] + E[j].cost) {
d[E[j].to] = max(-INF ,d[E[j].from] + E[j].cost); //avoiding overflow
negaCycle = E[j].to;
}
}
}
if(negaCycle == -1) break;
}
for(Long i = 0; i < n; i++){
pot[i] = d[i];
}
assert(negaCycle == -1); //(!) algorithm doesnt apply
}
bool dijkstra(Long s, Long t, Long n, Long &ans){ //O(nlogm + mlogn)
//<flow, cost>
priority_queue<pair<Long,Long> ,vector<pair<Long,Long>> , greater<pair<Long,Long>>> q;
vector<Long> d(n , INF);
vector<Long> residualCap(n, 0);
d[s] = 0;
residualCap[s] = INF;
q.push({d[s], s});
while(!q.empty()){
pair<Long,Long> p = q.top();
q.pop();
int u = p.second;
if(p.first != d[u]){
continue;
}
for( Long v: adj[u]){
Long cf = cap[u][v] - flow[u][v];
Long c = cost[u][v] + pot[u] - pot[v];
if(cf > 0 && d[u] + c < d[v]){
d[v] = d[u] + c;
q.push({d[v], v});
residualCap[v] = min(residualCap[u], cf);
parent[v] = u;
}
}
}
if(d[t] == INF){
return false;
}
for(Long i = 0; i < n; i++){
pot[i] += d[i];
}
Long cf = residualCap[t];
Long cur = t;
while(true ){
flow[parent[cur]][cur] += cf;
flow[cur][parent[cur]] -= cf;
cur = parent[cur];
if(cur == s){
break;
}
}
ans = pot[t] * cf;
return true;
}
Long minCostFlow(Long s, Long t, Long n){
//O(m log n * |f| ) = O(m log n *(nU))
//<maxFlow, minCost>
bellmanFord(s , t , n); //not necessary if there is no negative edges
Long ans = 0;
while(true){
Long c;
bool x = dijkstra(s , t , n , c );
if(!x) break;
ans += c;
}
return ans;
}
} G;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
freopen("fmcm.in", "r", stdin);
freopen("fmcm.out", "w", stdout);
Long n, m , s, t;
cin >> n >> m >> s >> t;
s--;
t--;
REP(i , m){
Long u , v , w , c;
cin >> u >> v >> w >> c;
u--;
v--;
G.addEdge(u , v , w , c, true);
}
cout << G.minCostFlow(s , t , n) << endl;
return 0;
}