#include <bits/stdc++.h>
#define debug(x) cout << #x << " = " << x << endl
#define REP(i,n) for(Long i = 0; i < (Long)n; i++)
#define pb push_back
using namespace std;
typedef int Long;
const Long MX = 350;
const Long INF = 1e9;
struct Edge{
Long from , to, cap, flow, cost;
Edge(){}
Edge(Long from , Long to, Long cap, Long cost) : from(from) , to(to), cap(cap), flow(0), cost(cost) {}
};
struct Path{
Long node, weight;
Path(){}
Path(Long node,Long weight) : node(node) , weight(weight) {}
bool operator <(const Path &P) const{
if(weight == P.weight){
return node > P.node;
}
return weight > P.weight;
}
};
struct Graph{
vector<Long> adj[MX];
Long cap[MX][MX];
Long cost[MX][MX];
Long flow[MX][MX];
Long parent[MX];
Long pot[MX];
vector<Edge> E;
bool inQ[MX];
void addEdge(Long u, Long v, Long w, Long c, bool dir){
adj[u].push_back(v);
adj[v].push_back(u);
cap[u][v] += w;
cost[u][v] = c;
cost[v][u] = -c;
E.pb(Edge(u , v , w , c));
}
void bellmanFord(Long s, Long t, Long n){
vector<Long> d(n , INF);
d[s] = 0;
queue<int> Q;
for (Q.push(s), inQ[s] = 1; !Q.empty(); Q.pop())
{
vector<int> :: iterator it;
int u = Q.front();
inQ[u] = 0;
for (Long v : adj[u]){
if (cap[u][v] - flow[u][v] > 0 && d[u] + cost[u][v] < d[v]){
d[v] = d[u] + cost[u][v];
if (inQ[v])
continue;
inQ[v] = true;
Q.push(v);
}
}
}
for(Long i = 0; i < n; i++){
pot[i] = d[i];
}
}
pair<Long,Long> dijkstra(Long s, Long t, Long n){ //O(nlogm + mlogn)
//<flow, cost>
priority_queue<Path> q;
vector<Long> d(n , INF);
vector<Long> residualCap(n, 0);
d[s] = 0;
residualCap[s] = INF;
q.push(Path(s , d[s]));
while(!q.empty()){
Path p = q.top();
q.pop();
int u = p.node;
if(p.weight != d[u]){
continue;
}
for( Long v: adj[u]){
Long cf = cap[u][v] - flow[u][v];
Long c = cost[u][v] + pot[u] - pot[v];
if(cf > 0 && d[u] + c < d[v]){
d[v] = d[u] + c;
q.push(Path(v , d[v]));
residualCap[v] = min(residualCap[u], cf);
parent[v] = u;
}
}
}
if(d[t] == INF){
return {0,0};
}
for(Long i = 0; i < n; i++){
pot[i] += d[i];
}
Long cf = residualCap[t];
Long cur = t;
while(true ){
flow[parent[cur]][cur] += cf;
flow[cur][parent[cur]] -= cf;
cur = parent[cur];
if(cur == s){
break;
}
}
return {cf , pot[t] * cf};
}
pair<Long,Long> minCostFlow(Long s, Long t, Long n){
//O(m log n * |f| ) = O(m log n *(nU))
//<maxFlow, minCost>
bellmanFord(s , t , n); //not necessary if there is no negative edges
pair<Long,Long> inc;
pair<Long,Long> ans = {0,0};
do{
inc = dijkstra(s , t , n );
ans.first += inc.first;
ans.second += inc.second;
}while(inc.first > 0);
return ans;
}
} G;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
freopen("fmcm.in", "r", stdin);
freopen("fmcm.out", "w", stdout);
Long n, m , s, t;
cin >> n >> m >> s >> t;
s--;
t--;
REP(i , m){
Long u , v , w , c;
cin >> u >> v >> w >> c;
u--;
v--;
G.addEdge(u , v , w , c, true);
}
cout << G.minCostFlow(s , t , n).second << endl;
return 0;
}