Pagini recente » Cod sursa (job #2503943) | Cod sursa (job #2736708) | Cod sursa (job #2302583) | Cod sursa (job #2686496) | Cod sursa (job #2534813)
//#pragma GCC optimize ("O3")
//#pragma GCC target ("sse4")
#include <bits/stdc++.h>
using namespace std;
#define sim template < class c
#define ris return * this
#define dor > debug & operator <<
#define eni(x) sim > typename \
enable_if<sizeof dud<c>(0) x 1, debug&>::type operator<<(c i) {
sim > struct rge { c b, e; };
sim > rge<c> range(c i, c j) { return rge<c>{i, j}; }
sim > auto dud(c* x) -> decltype(cerr << *x, 0);
sim > char dud(...);
struct debug {
#ifdef LOCAL
~debug() { cerr << endl; }
eni(!=) cerr << boolalpha << i; ris; }
eni(==) ris << range(begin(i), end(i)); }
sim, class b dor(pair < b, c > d) {
ris << "(" << d.first << ", " << d.second << ")";
}
sim dor(rge<c> d) {
*this << "[";
for (auto it = d.b; it != d.e; ++it)
*this << ", " + 2 * (it == d.b) << *it;
ris << "]";
}
#else
sim dor(const c&) { ris; }
#endif
};
#define imie(...) " [" << #__VA_ARGS__ ": " << (__VA_ARGS__) << "] "
// CHECK THE LIMITS
typedef long long ll;
const int MOD = 1000000007;
const ll INFLL = 1e18;
const int INF = 1e9;
const int NMAX = 100005;
const int K = 18;
int gcd(int a, int b) {
return b ? gcd(b, a%b) : a;
}
ifstream fin("lca.in");
ofstream fout("lca.out");
int n,m;
// H[i] - reprezentarea grafului sub forma euler H[i] nodul de pe poz i in reprezentare
// L[i] - nivelul la care se afla nodul i;
// LG[i] - log2 din i ne ajuta la rmq
// First[i] - prima aparitie a nodului i in reprezentarea euler
// sp[NMAX][k] sparse table calculeaza rmq
int L[NMAX*2], H[NMAX*2], LG[NMAX*2], First[NMAX];
int sp[NMAX*2][K];
bool visited[NMAX];
vector<int> G[NMAX];
int p = -1;
void dfs(int node, int level)
{
H[++p] = node;
L[p] = level;
First[node] = p;
for(auto &child : G[node])
{
dfs(child,level+1);
H[++p]=node;
L[p] = level;
}
}
void construct_log()
{
LG[1] = 0;
for(int i =2 ; i< NMAX; ++i)
{
LG[i] = LG[i>>1] + 1;
}
}
void construct_rmq()
{
// construct logarithm array;
construct_log();
for(int i = 0; i< p; ++i)
{
sp[i][0] = i;
}
for(int j = 1; j <= K; j++)
{
for(int i = 0; i + (1 << j) <= p; ++i)
{
int levelFirst = L[sp[i][j-1]];
int levelSecond = L[sp[i + (1 << (j-1))][j-1]];
if(levelFirst < levelSecond)
{
sp[i][j] = sp[i][j-1];
}
else
{
sp[i][j] = sp[i + (1 << (j-1))][j-1];
}
}
}
}
int lca(int left, int right)
{
int first_left = First[left];
int first_right = First[right];
// swap them depending of the order in euler representation
if(first_right < first_left)
{
int aux = first_left;
first_left = first_right;
first_right = aux;
}
int j = LG[first_right - first_left + 1];
return min(H[sp[first_left][j]], H[sp[first_right - (1<<j) + 1][j]]);
}
int main()
{
ios_base::sync_with_stdio(0);
cin.tie(0);
fin >> n >> m;
for(int i = 1; i< n; ++i)
{
int x;
fin >> x;
x--;
G[x].push_back(i);
}
// TODO
// de calculat reprezentarea euler si pentru fiecare nod sa ii retin nivelul
dfs(0,0);
construct_rmq();
// pentru fiecare query sa fac rmq intre H[first[left]] si H[first[right]]
// sparse tabelul pentru rmq tine minte indexul nivelului minim
for(int i =0; i < m; ++i)
{
int left, right;
fin >> left >> right;
left--;right--;
fout << lca(left,right)+1 << '\n';
}
return 0;
}