Cod sursa(job #2490515)

Utilizator dragos99Homner Dragos dragos99 Data 10 noiembrie 2019 14:08:48
Problema Cele mai apropiate puncte din plan Scor 0
Compilator cpp-64 Status done
Runda Arhiva educationala Marime 1.97 kb
#include <bits/stdc++.h>
using namespace std;

    ifstream f("cmap.in");
    ofstream g("cmap.out");

class Point
{
    public:
    int x, y;
};

int compareX(const void* a, const void* b)
{
    Point *p1 = (Point *)a, *p2 = (Point *)b;
    return (p1->x - p2->x);
}

int compareY(const void* a, const void* b)
{
    Point *p1 = (Point *)a, *p2 = (Point *)b;
    return (p1->y - p2->y);
}

float dist(Point p1, Point p2)
{
    return sqrt( (p1.x - p2.x)*(p1.x - p2.x) +
                (p1.y - p2.y)*(p1.y - p2.y)
            );
}

float bruteForce(Point P[], int n)
{
    float min = FLT_MAX;
    for (int i = 0; i < n; ++i)
        for (int j = i+1; j < n; ++j)
            if (dist(P[i], P[j]) < min)
                min = dist(P[i], P[j]);
    return min;
}

float min(float x, float y)
{
    return (x < y)? x : y;
}

float stripClosest(Point strip[], int size, float d)
{
    float min = d;

    qsort(strip, size, sizeof(Point), compareY);

    for (int i = 0; i < size; ++i)
        for (int j = i+1; j < size && (strip[j].y - strip[i].y) < min; ++j)
            if (dist(strip[i],strip[j]) < min)
                min = dist(strip[i], strip[j]);

    return min;
}

float closestUtil(Point P[], int n)
{
    if (n <= 3)
        return bruteForce(P, n);

    int mid = n/2;
    Point midPoint = P[mid];

    float dl = closestUtil(P, mid);
    float dr = closestUtil(P + mid, n - mid);

    float d = min(dl, dr);

    Point strip[n];
    int j = 0;
    for (int i = 0; i < n; i++)
        if (abs(P[i].x - midPoint.x) < d)
            strip[j] = P[i], j++;

    return min(d, stripClosest(strip, j, d) );
}

float closest(Point P[], int n)
{
    qsort(P, n, sizeof(Point), compareX);

    return closestUtil(P, n);
}

int main()
{
    Point P[100005];
    int n;
    f>>n;
    for(int i = 0 ; i < n ; i++){
        f>>P[i].x>>P[i].y;
    }
    g << fixed << setprecision(6) << closest(P, n);
    return 0;
}