Mai intai trebuie sa te autentifici.
Cod sursa(job #2472892)
Utilizator | Data | 13 octombrie 2019 09:47:05 | |
---|---|---|---|
Problema | A+B | Scor | 100 |
Compilator | cpp-64 | Status | done |
Runda | Arhiva de probleme | Marime | 21.27 kb |
#include <bits/stdc++.h>
using namespace std;
///Euleeer
int phi[1000001];
int euler()
{
int n,i,j;
cin >> n;
for(i = 2;i <= n;i++){
phi[i] = i;
}
for(i = 2;i <= n;i++){
if(phi[i] == i){
for(j = i;j <= n;j+=i){
phi[j] -= (phi[j] / i);
}
}
}
long long sum = 0;
for(i = 0;i <= n;i++){
sum += phi[i];
}
cout << sum * 2 + 1;
return 0;
}
///Combinari cu pascal
int binomialCoeff(int n, int k)
{
int C[k+1];
memset(C, 0, sizeof(C));
C[0] = 1; // nC0 is 1
for (int i = 1; i <= n; i++)
{
// Compute next row of pascal triangle using
// the previous row
for (int j = min(i, k); j > 0; j--)
C[j] = C[j] + C[j-1];
}
return C[k];
}
///Catalan
///Al treilea catalan
unsigned long int binomialCoeff(unsigned int n, unsigned int k)
{
unsigned long int res = 1;
// Since C(n, k) = C(n, n-k)
if (k > n - k)
k = n - k;
// Calculate value of [n*(n-1)*---*(n-k+1)] / [k*(k-1)*---*1]
for (int i = 0; i < k; ++i)
{
res *= (n - i);
res /= (i + 1);
}
return res;
}
// A Binomial coefficient based function to find nth catalan
// number in O(n) time
unsigned long int catalann(unsigned int n)
{
// Calculate value of 2nCn
unsigned long int c = binomialCoeff(2*n, n);
// return 2nCn/(n+1)
return c/(n+1);
}
///Al doilea catalan
unsigned long int catalanDP(unsigned int n)
{
// Table to store results of subproblems
unsigned long int catalan[n+1];
// Initialize first two values in table
catalan[0] = catalan[1] = 1;
// Fill entries in catalan[] using recursive formula
for (int i=2; i<=n; i++)
{
catalan[i] = 0;
for (int j=0; j<i; j++)
catalan[i] += catalan[j] * catalan[i-j-1];
}
// Return last entry
return catalan[n];
}
///Primul catalan
unsigned long int catalan(unsigned int n)
{
// Base case
if (n <= 1) return 1;
// catalan(n) is sum of catalan(i)*catalan(n-i-1)
unsigned long int res = 0;
for (int i=0; i<n; i++)
res += catalan(i)*catalan(n-i-1);
return res;
}
/*RMQ 2D
int n;
int sparse[505][505][18];
int v[505][505];
int logs[505];
void precalculate()
{
logs[1] = 0;
for(int i = 2; i <= n; i++)
{
logs[i] = logs[i/2] + 1;
}
}
void build()
{
for(int k = 0; k <= logs[n]; k++)
{
int lungime = (1 << k);
for(int i = 1; i + lungime <= n + 1; i++)
{
for(int j = 1; j + lungime <= n + 1; j++)
{
if(lungime != 1)
{
sparse[i][j][k] = max(sparse[i][j][k-1],max(sparse[i + lungime / 2][j][k-1],max(sparse[i][j + lungime / 2][k-1],sparse[i + lungime / 2][j + lungime / 2][k-1])));
}else{
sparse[i][j][k] = v[i][j];
}
}
}
}
}
int getmin(int x,int y,int k){
int p = logs[k];
int lung = (1 << p);
int i = x + k;
int j = y + k;
return max(sparse[x][y][p],max(sparse[i - lung][y][p],max(sparse[x][j - lung][p],sparse[i - lung][j - lung][p])));
}*/
///Al k-lea nr fibonacci
const int MOD = 666013;
struct matrice
{
long long m[2][2];
void clearr(){
for(int i = 0;i < 2;i++){
for(int j = 0;j < 2;j++){
m[i][j] = 0;
}
}
}
matrice operator * (matrice const a)
const{
matrice rez;
rez.clearr();
for(int i = 0; i < 2; i++)
{
for(int j = 0; j < 2; j++)
{
rez.m[i][j] = 0;
for(int k = 0; k < 2; k++)
{
rez.m[i][j] += m[i][k] * a.m[k][j];
rez.m[i][j] %= MOD;
}
}
}
return rez;
}
};
matrice exp(matrice n,int p)
{
matrice rest;
int i,j;
for(i = 0; i < 2; i++)
for(j = 0; j < 2; j++)
{
rest.m[i][j] = n.m[i][j];
}
while(p)
{
if(p % 2)
{
rest = rest * n;
}
n = n * n;
p >>= 1;
}
return rest;
}
int funcct()
{
int n,i,j;
cin >> n;
matrice init;
init.m[0][0] = init.m[1][0] = init.m[0][1] = 1;
init.m[1][1] = 0;
cout << exp(init,n -2).m[0][0] ;
return 0;
}
///Disjoint
int numar[100001],principal[10001];
int radacina(int x){
if(principal[x] == 0)
return x;
principal[x] = radacina(principal[x]);
return principal[x];
}
void reuniune(int x,int y){
int a = radacina(x),b = radacina(y);
if(numar[a] > numar[b])
{
numar[a] += numar[b];
principal[b] = a;
}else{
numar[b] += numar[a];
principal[a] = b;
}
}
bool verific(int x,int y){
if(radacina(x) == radacina(y))
return true;
return false;
}
///Invers Modular
int euler(int n){
long long d = 2, p, prod = n;
while ( d * d <= n ) {
p = 0;
while ( n % d == 0 ) {
n /= d;
p ++;
}
if ( p )
prod = prod / d * ( d - 1 );
d ++;
}
if ( n > 1 )
prod = prod / n * ( n - 1 );
return prod;
}
int putere(int a,int n,int m){
int prod = 1;
do{
if(n%2 != 0){
prod = (long long)prod * a % m;
}
a = 1LL * a * a % m;
n /= 2;
}while(n != 0);
return prod;
}
///RMQ 1D
int logs[100001];
int n,m;
int sparse[18][100001];
int cv[100001];
void precalculate(){
logs[1] = 0;
for(int i = 2;i <= n;i++){
logs[i] = logs[i/2] + 1;
}
}
void build(){
for(int i = 0;i <= logs[n];i++){
int lungime = (1 << i);
for(int j = 1;j + lungime <= n + 1;j++){
if(lungime != 1)
sparse[i][j] = min(sparse[i - 1][j],sparse[i-1][j + lungime / 2]);
else
sparse[0][j] = cv[j];
}
}
sparse[0][n] = cv[n];
}
int getmin(int l,int r){
int p = logs[r - l + 1];
return min(sparse[p][l],sparse[p][r - (1 << p) + 1]);
}
///lgput
long long exponentiere(long long n,long long p)
{
long long rest = 1;
while(p)
{
if(p % 2)
{
rest *= n;
//rest %= MOD;
}
n *= n;
//n %= MOD;
p >>= 1;
}
return rest;
}
///Numere marii
const int base = 1000000000;
const int base_digits = 9;
struct bigint
{
vector<int> a;
int sign;
bigint() :
sign(1)
{
}
bigint(long long v)
{
*this = v;
}
bigint(const string &s)
{
read(s);
}
void operator=(const bigint &v)
{
sign = v.sign;
a = v.a;
}
void operator=(long long v)
{
sign = 1;
if (v < 0)
sign = -1, v = -v;
for (; v > 0; v = v / base)
a.push_back(v % base);
}
bigint operator+(const bigint &v) const //Addition Operation
{
if (sign == v.sign)
{
bigint res = v;
for (int i = 0, carry = 0; i < (int) max(a.size(), v.a.size()) || carry; ++i)
{
if (i == (int) res.a.size())
res.a.push_back(0);
res.a[i] += carry + (i < (int) a.size() ? a[i] : 0);
carry = res.a[i] >= base;
if (carry)
res.a[i] -= base;
}
return res;
}
return *this - (-v);
}
bigint operator-(const bigint &v) const //Subtraction Function
{
if (sign == v.sign)
{
if (abs() >= v.abs())
{
bigint res = *this;
for (int i = 0, carry = 0; i < (int) v.a.size() || carry; ++i)
{
res.a[i] -= carry + (i < (int) v.a.size() ? v.a[i] : 0);
carry = res.a[i] < 0;
if (carry)
res.a[i] += base;
}
res.trim();
return res;
}
return -(v - *this);
}
return *this + (-v);
}
void operator*=(int v) //Multiplication Function
{
if (v < 0)
sign = -sign, v = -v;
for (int i = 0, carry = 0; i < (int) a.size() || carry; ++i)
{
if (i == (int) a.size())
a.push_back(0);
long long cur = a[i] * (long long) v + carry;
carry = (int) (cur / base);
a[i] = (int) (cur % base);
//asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base));
}
trim();
}
bigint operator*(int v) const
{
bigint res = *this;
res *= v;
return res;
}
friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1)
{
int norm = base / (b1.a.back() + 1);
bigint a = a1.abs() * norm;
bigint b = b1.abs() * norm;
bigint q, r;
q.a.resize(a.a.size());
for (int i = a.a.size() - 1; i >= 0; i--)
{
r *= base;
r += a.a[i];
int s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()];
int s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1];
int d = ((long long) base * s1 + s2) / b.a.back();
r -= b * d;
while (r < 0)
r += b, --d;
q.a[i] = d;
}
q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
return make_pair(q, r / norm);
}
bigint operator/(const bigint &v) const //Division Function
{
return divmod(*this, v).first;
}
bigint operator%(const bigint &v) const //Modulus Operation
{
return divmod(*this, v).second;
}
void operator/=(int v) //Shorthand Operation
{
if (v < 0)
sign = -sign, v = -v;
for (int i = (int) a.size() - 1, rem = 0; i >= 0; --i)
{
long long cur = a[i] + rem * (long long) base;
a[i] = (int) (cur / v);
rem = (int) (cur % v);
}
trim();
}
bigint operator/(int v) const
{
bigint res = *this;
res /= v;
return res;
}
int operator%(int v) const
{
if (v < 0)
v = -v;
int m = 0;
for (int i = a.size() - 1; i >= 0; --i)
m = (a[i] + m * (long long) base) % v;
return m * sign;
}
void operator+=(const bigint &v)
{
*this = *this + v;
}
void operator-=(const bigint &v)
{
*this = *this - v;
}
void operator*=(const bigint &v)
{
*this = *this * v;
}
void operator/=(const bigint &v)
{
*this = *this / v;
}
bool operator<(const bigint &v) const
{
if (sign != v.sign)
return sign < v.sign;
if (a.size() != v.a.size())
return a.size() * sign < v.a.size() * v.sign;
for (int i = a.size() - 1; i >= 0; i--)
if (a[i] != v.a[i])
return a[i] * sign < v.a[i] * sign;
return false;
}
bool operator>(const bigint &v) const
{
return v < *this;
}
bool operator<=(const bigint &v) const
{
return !(v < *this);
}
bool operator>=(const bigint &v) const
{
return !(*this < v);
}
bool operator==(const bigint &v) const
{
return !(*this < v) && !(v < *this);
}
bool operator!=(const bigint &v) const
{
return *this < v || v < *this;
}
void trim()
{
while (!a.empty() && !a.back())
a.pop_back();
if (a.empty())
sign = 1;
}
bool isZero() const
{
return a.empty() || (a.size() == 1 && !a[0]);
}
bigint operator-() const
{
bigint res = *this;
res.sign = -sign;
return res;
}
bigint abs() const
{
bigint res = *this;
res.sign *= res.sign;
return res;
}
long long longValue() const
{
long long res = 0;
for (int i = a.size() - 1; i >= 0; i--)
res = res * base + a[i];
return res * sign;
}
friend bigint gcd(const bigint &a, const bigint &b) //GCD Function(Euler Algorithm)
{
return b.isZero() ? a : gcd(b, a % b);
}
friend bigint lcm(const bigint &a, const bigint &b) //Simple LCM Operation
{
return a / gcd(a, b) * b;
}
void read(const string &s) //Reading a Big Integer
{
sign = 1;
a.clear();
int pos = 0;
while (pos < (int) s.size() && (s[pos] == '-' || s[pos] == '+'))
{
if (s[pos] == '-')
sign = -sign;
++pos;
}
for (int i = s.size() - 1; i >= pos; i -= base_digits)
{
int x = 0;
for (int j = max(pos, i - base_digits + 1); j <= i; j++)
x = x * 10 + s[j] - '0';
a.push_back(x);
}
trim();
}
friend istream& operator>>(istream &stream, bigint &v)
{
string s;
stream >> s;
v.read(s);
return stream;
}
friend ostream& operator<<(ostream &stream, const bigint &v)
{
if (v.sign == -1)
stream << '-';
stream << (v.a.empty() ? 0 : v.a.back());
for (int i = (int) v.a.size() - 2; i >= 0; --i)
stream << setw(base_digits) << setfill('0') << v.a[i];
return stream;
}
static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits)
{
vector<long long> p(max(old_digits, new_digits) + 1);
p[0] = 1;
for (int i = 1; i < (int) p.size(); i++)
p[i] = p[i - 1] * 10;
vector<int> res;
long long cur = 0;
int cur_digits = 0;
for (int i = 0; i < (int) a.size(); i++)
{
cur += a[i] * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits)
{
res.push_back(int(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((int) cur);
while (!res.empty() && !res.back())
res.pop_back();
return res;
}
typedef vector<long long> vll;
static vll karatsubaMultiply(const vll &a, const vll &b) //Multiplication using Karatsuba Algorithm
{
int n = a.size();
vll res(n + n);
if (n <= 32)
{
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
res[i + j] += a[i] * b[j];
return res;
}
int k = n >> 1;
vll a1(a.begin(), a.begin() + k);
vll a2(a.begin() + k, a.end());
vll b1(b.begin(), b.begin() + k);
vll b2(b.begin() + k, b.end());
vll a1b1 = karatsubaMultiply(a1, b1);
vll a2b2 = karatsubaMultiply(a2, b2);
for (int i = 0; i < k; i++)
a2[i] += a1[i];
for (int i = 0; i < k; i++)
b2[i] += b1[i];
vll r = karatsubaMultiply(a2, b2);
for (int i = 0; i < (int) a1b1.size(); i++)
r[i] -= a1b1[i];
for (int i = 0; i < (int) a2b2.size(); i++)
r[i] -= a2b2[i];
for (int i = 0; i < (int) r.size(); i++)
res[i + k] += r[i];
for (int i = 0; i < (int) a1b1.size(); i++)
res[i] += a1b1[i];
for (int i = 0; i < (int) a2b2.size(); i++)
res[i + n] += a2b2[i];
return res;
}
bigint operator*(const bigint &v) const
{
vector<int> a6 = convert_base(this->a, base_digits, 6);
vector<int> b6 = convert_base(v.a, base_digits, 6);
vll a(a6.begin(), a6.end());
vll b(b6.begin(), b6.end());
while (a.size() < b.size())
a.push_back(0);
while (b.size() < a.size())
b.push_back(0);
while (a.size() & (a.size() - 1))
a.push_back(0), b.push_back(0);
vll c = karatsubaMultiply(a, b);
bigint res;
res.sign = sign * v.sign;
for (int i = 0, carry = 0; i < (int) c.size(); i++)
{
long long cur = c[i] + carry;
res.a.push_back((int) (cur % 1000000));
carry = (int) (cur / 1000000);
}
res.a = convert_base(res.a, 6, base_digits);
res.trim();
return res;
}
};
///Parsare
class InParser
{
private:
FILE *fin;
char *buff;
int sp;
char read_ch()
{
++sp;
if (sp == 4096)
{
sp = 0;
fread(buff, 1, 4096, fin);
}
return buff[sp];
}
public:
InParser(const char* nume)
{
fin = fopen(nume, "r");
buff = new char[4096]();
sp = 4095;
}
InParser& operator >> (int &n)
{
char c;
while (!isdigit(c = read_ch()) && c != '-');
int sgn = 1;
if (c == '-')
{
n = 0;
sgn = -1;
}
else
{
n = c - '0';
}
while (isdigit(c = read_ch()))
{
n = 10 * n + c - '0';
}
n *= sgn;
return *this;
}
InParser& operator >> (long long &n)
{
char c;
n = 0;
while (!isdigit(c = read_ch()) && c != '-');
long long sgn = 1;
if (c == '-')
{
n = 0;
sgn = -1;
}
else
{
n = c - '0';
}
while (isdigit(c = read_ch()))
{
n = 10 * n + c - '0';
}
n *= sgn;
return *this;
}
};
struct ura
{
long double x,y;
} v[100001];
long double sol = 0;
///aria unui poligon
void aria()
{
int n,i;
//cin >> n;
for(i = 1; i <= n; i++)
{
//cin >> v[i].x >> v[i].y;
}
v[n + 1].x = v[1].x;
v[n + 1].y = v[1].y;
for(i = 1; i <= n; i++)
{
sol += (v[i].x * v[i + 1].y - v[i+1].x * v[i].y);
}
sol /= 2;
//cout <<fixed<<setprecision(10)<< sol;
}
///Ciclu in graf gangster
struct Edge
{
long long u;
long long v;
long long weight;
};
class Graph
{
long long V ;
list < pair <long long, long long > >*adj;
vector < Edge > edge;
public :
Graph( long long V )
{
this->V = V ;
adj = new list < pair <long long, long long > >[V];
}
void addEdge ( long long u, long long v, long long w );
void removeEdge( long long u, long long v, long long w );
long long ShortestPath (long long u, long long v );
void RemoveEdge( long long u, long long v );
long long FindMinimumCycle ();
};
void Graph :: addEdge ( long long u, long long v, long long w )
{
adj[u].push_back( make_pair( v, w ));
adj[v].push_back( make_pair( u, w ));
Edge e { u, v, w };
edge.push_back ( e );
}
void Graph :: removeEdge ( long long u, long long v, long long w )
{
adj[u].remove(make_pair( v, w ));
adj[v].remove(make_pair(u, w ));
}
long long Graph :: ShortestPath ( long long u, long long v )
{
set< pair<long long, long long> > setds;
vector<long long> dist(V, 2e9);
setds.insert(make_pair(0, u));
dist[u] = 0;
while (!setds.empty())
{
pair<long long, long long> tmp = *(setds.begin());
setds.erase(setds.begin());
long long u = tmp.second;
list< pair<long long, long long> >::iterator i;
for (i = adj[u].begin(); i != adj[u].end(); ++i)
{
long long v = (*i).first;
long long weight = (*i).second;
if (dist[v] > dist[u] + weight)
{
if (dist[v] != 2e9)
setds.erase(setds.find(make_pair(dist[v], v)));
dist[v] = dist[u] + weight;
setds.insert(make_pair(dist[v], v));
}
}
}
return dist[v] ;
}
long long Graph :: FindMinimumCycle ( )
{
long long min_cycle = 2e9;
long long E = edge.size();
for ( long long i = 0 ; i < E ; i++ )
{
Edge e = edge[i];
removeEdge( e.u, e.v, e.weight ) ;
long long vistance = ShortestPath( e.u, e.v );
min_cycle = min( min_cycle, vistance + e.weight );
addEdge( e.u, e.v, e.weight );
}
return min_cycle ;
}
///Adunare
int main()
{
ifstream cin("adunare.in");
ofstream cout("adunare.out");
bigint a,b;
cin >> a >> b;
cout << a + b;
return 0;
}