#include <fstream>
#define NMAX 100000
using namespace std;
ifstream fin("arbint.in");
ofstream fout("arbint.out");
int n, m, v[NMAX + 4];
int aint[NMAX * 2 + 1]; // Space complexity = O(NMAX * 2) pentru ca inaltimea arborelui este log2N, deci avem 1 + 2 + .... + 2^(log2N) noduri = 2 * 2^(log2N) - 1 noduri (formula de la progresii geometrice)
void Build(); // Time complexity = O(N)
void Update(); // Time complexity = O(log2N) pentru ca are un path unic pana la radacina
void Query(); // time complexity = O(log2N) pentru ca la fiecare nivel al inaltimii o sa ne extindem maxim pe 2 noduri deci O(2 * log2N) = O(log2N)
void Build(int nod, int st, int dr)
{
if (st == dr)
{
aint[nod] = v[st];
return;
}
int mid = (st + dr) / 2;
Build(nod * 2, st, mid);
Build(nod * 2 + 1, mid + 1, dr);
aint[nod] = max(aint[nod * 2], aint[nod * 2 + 1]);
}
int Query(int nod, int st, int dr, int a, int b)
{
if (st >= a && dr <= b)
return aint[nod];
if (st > b || dr < a)
return -(1 << 30);
int mid = (st + dr) / 2;
return max(Query(nod * 2, st, mid, a, b), Query(nod * 2 + 1, mid + 1, dr, a, b));
}
void Update(int nod, int st, int dr, int poz, int val)
{
if (st > poz || dr < poz) return;
if (st == dr && st == poz)
{
aint[nod] = val;
return;
}
int mid = (st + dr) / 2;
Update(nod * 2, st, mid, poz, val);
Update(nod * 2 + 1, mid + 1, dr, poz, val);
aint[nod] = max(aint[nod * 2], aint[nod * 2 + 1]);
}
int main()
{
fin >> n >> m;
for (int i = 1; i <= n; ++i)
fin >> v[i];
Build(1, 1, n);
while (m--)
{
int p, a, b;
fin >> p >> a >> b;
if (p == 0)
fout << Query(1, 1, n, a, b) << "\n";
else
Update(1, 1, n, a, b);
}
return 0;
}