#include <bits/stdc++.h>
using namespace std;
template <typename type>
class Graph {
public:
struct Edge {
int from, to;
type cost;
};
int n;
vector<Edge> edg;
vector<vector<int>> gph;
Graph(int _n) : n(_n) {
gph.resize(n); }
virtual int addEdge(int from, int to, type cost = 1) {
assert(0 <= min(from, to) and max(from, to) < n);
int id = (int) edg.size();
gph[from].push_back(id);
edg.push_back({from, to, cost});
return id; }
};
template <typename type>
vector<type> dijkstraSet(const Graph<type> &g, vector<int> lst) {
set<pair<type, int>> mst;
vector<type> dst(g.n, numeric_limits<type> :: max());
for (int src : lst) {
assert(0 <= src and src < g.n);
dst[src] = 0; mst.insert(make_pair(0, src)); }
while (!mst.empty()) {
int x = mst.begin() -> second; mst.erase(mst.begin());
for (int id : g.gph[x]) {
auto &ed = g.edg[id]; int y = ed.from ^ ed.to ^ x;
if (dst[y] > dst[x] + ed.cost) {
mst.erase(make_pair(dst[y], y));
dst[y] = dst[x] + ed.cost;
mst.insert(make_pair(dst[y], y)); } } }
return dst; }
template <typename type>
vector<type> dijkstraSet(const Graph<type> &g, int src) {
return dijkstraSet(g, vector<int>(1, src)); }
template <typename type>
vector<type> dijkstraPriorityQueue(const Graph<type> &g, vector<int> lst) {
vector<type> dst(g.n, numeric_limits<type> :: max());
priority_queue<pair<type, int>, vector<pair<type, int>>, greater<pair<type, int>>> prq;
for (int src : lst) {
assert(0 <= src and src < g.n);
dst[src] = 0; prq.push(make_pair(0, src)); }
while (!prq.empty()) {
type c = prq.top().first; int x = prq.top().second; prq.pop();
if (dst[x] != c) {
continue; }
for (int id : g.gph[x]) {
auto &ed = g.edg[id]; int y = ed.from ^ ed.to ^ x;
if (dst[y] > dst[x] + ed.cost) {
dst[y] = dst[x] + ed.cost;
prq.push(make_pair(dst[y], y)); } } }
return dst; }
template <typename type>
vector<type> dijkstraPriorityQueue(const Graph<type> &g, int src) {
return dijkstraPriorityQueue(g, vector<int>(1, src)); }
template <typename type>
vector<type> bellmanFord(const Graph<type> &g, vector<int> lst, const int lim = 1000000) {
vector<type> dst(g.n, numeric_limits<type> :: max());
deque<int> que; vector<bool> oki(g.n, false); int cnt = 0;
for (int src : lst) {
assert(0 <= src and src < g.n);
dst[src] = 0; oki[src] = true; que.push_back(src); }
while (que.size()) {
int x = que.front(); oki[x] = false; que.pop_front();
for (int id : g.gph[x]) {
auto &ed = g.edg[id]; int y = ed.from ^ ed.to ^ x;
if (dst[y] > dst[x] + ed.cost) {
dst[y] = dst[x] + ed.cost;
if (!oki[y]) {
oki[y] = true; ++cnt; que.push_back(y);
if (cnt == lim) {
return vector<type>(); } } } } }
return dst; }
template <typename type>
vector<type> bellmanFord(const Graph<type> &g, int src, const int lim = 1000000) {
return bellmanFord(g, vector<int>(1, src), lim); }
/*
template <typename type>
class DirectedGraph : public Graph<type> {
public:
using Graph<type> :: n;
using Graph<type> :: gph;
using Graph<type> :: edg;
DirectedGraph(int _n) :
Graph<type>(_n) {}
int addEdge(int from, int to, type cost = 1) {
assert(0 <= min(from, to) and max(from, to) < n);
int id = (int) edg.size();
gph[from].push_back(id);
edg.push_back({from, to, cost});
return id; }
DirectedGraph<type> reverseGraph(void) {
DirectedGraph<type> rvg(n);
for (auto &ed : edg) {
rvg.addEdge(ed.to, ed.from, ed.cost); }
return rvg; }
};
*/
const int DIM = 50005;
Graph<int> g(DIM);
int main(void) {
freopen("dijkstra.in", "r", stdin);
freopen("dijkstra.out", "w", stdout);
int n, m; cin >> n >> m;
while (m--) {
int x, y, c; cin >> x >> y >> c;
g.addEdge(x, y, c); }
vector<int> dst1 = dijkstraPriorityQueue(g, 1),
dst2 = dijkstraSet(g, vector<int>(1, 1));
for (int i = 1; i <= n; ++i) {
if (dst1[i] == numeric_limits<int> :: max()) {
dst1[i] = 0; }
if (dst2[i] == numeric_limits<int> :: max()) {
dst2[i] = 0; }
assert(dst1[i] == dst2[i]);
if (i > 1) {
cout << dst1[i] << " "; } }
return 0; }