/*input
5 7 2 5
3 1 7 -1
1 4 3 0
3 4 3 -4
1 5 7 0
4 5 1 1
2 5 8 -3
2 3 4 -3
*/
#include <bits/stdc++.h>
using namespace std;
#define sp ' '
#define endl '\n'
#define fi first
#define se second
#define mp make_pair
#define __builtin_popcount __builtin_popcountll
#define bit(x,y) ((x>>y)&1LL)
#define loop(i,l,r) for(int i=(int)l; i<=(int)r; i++)
#define rloop(i,l,r) for(int i=(int)l; i>=(int)r; i--)
template <class T1, class T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &a) {
return os << '(' << a.first << ", " << a.second << ')';
}
template <class T>
ostream &operator<<(ostream &os, const vector<T> &a) {
os << '[';
for (unsigned int i = 0; i < a.size(); i++)
os << a[i] << (i < a.size() - 1 ? ", " : "");
os << ']';
return os;
}
// Push-Relabel implementation of the cost-scaling algorithm
// Runs in O( <max_flow> * log(V * max_edge_cost)) = O( V^2 E * log(V * C))
// Really fast in practice, like O(V * E), so 3e4 edges are fine.
// Operates on integers, costs are multiplied by N!!
// This version uses the look-ahead heuristic as described in
// "An efficient implementation of a scaling minimum-cost Flow algorithm"
// by A.V. Goldberg (1992)
template<typename flow_t = int, typename cost_t = int>
struct mcSFlow {
struct Edge {
cost_t c;
flow_t f;
int to, rev;
Edge(int _to, cost_t _c, flow_t _f, int _rev): c(_c), f(_f), to(_to), rev(_rev) {}
};
static constexpr cost_t INFCOST = numeric_limits<cost_t>::max() / 2;
cost_t eps;
int N, S, T;
vector<vector<Edge> > G;
vector<unsigned int> isq, cur;
vector<flow_t> ex;
vector<cost_t> h;
mcSFlow(int _N, int _S, int _T): eps(0), N(_N), S(_S), T(_T), G(_N) {}
Edge add_edge(int a, int b, cost_t cost, flow_t cap) {
assert(cap >= 0);
assert(a >= 0 && a < N && b >= 0 && b < N);
assert(a != b);
cost *= N;
eps = max(eps, abs(cost));
G[a].emplace_back(b, cost, cap, G[b].size());
Edge ret = G[a].back();
G[b].emplace_back(a, -cost, 0, G[a].size() - 1);
return ret;
}
void add_flow(Edge& e, flow_t f) {
Edge &back = G[e.to][e.rev];
if (!ex[e.to] && f)
hs[h[e.to]].push_back(e.to);
e.f -= f; ex[e.to] += f;
back.f += f; ex[back.to] -= f;
}
vector<vector<int> > hs;
vector<int> co;
// fast max flow, lowest label version
flow_t max_flow() {
ex.assign(N, 0);
h.assign(N, 0); hs.resize(2 * N);
co.assign(2 * N, 0); cur.assign(N, 0);
h[S] = N;
ex[T] = 1;
co[0] = N - 1;
for (auto &e : G[S]) add_flow(e, e.f);
if (hs[0].size())
for (int hi = 0; hi >= 0;) {
int u = hs[hi].back();
hs[hi].pop_back();
while (ex[u] > 0) { // discharge u
if (cur[u] == G[u].size()) {
h[u] = 1e9;
for (unsigned int i = 0; i < G[u].size(); ++i) {
auto &e = G[u][i];
if (e.f && h[u] > h[e.to] + 1) {
h[u] = h[e.to] + 1;
cur[u] = i;
}
}
if (++co[h[u]], !--co[hi] && hi < N)
for (int i = 0; i < N; ++i) {
if (hi < h[i] && h[i] < N) {
--co[h[i]];
h[i] = N + 1;
}
}
hi = h[u];
} else if (G[u][cur[u]].f && h[u] == h[G[u][cur[u]].to] + 1) {
add_flow(G[u][cur[u]], min(ex[u], G[u][cur[u]].f));
} else ++cur[u];
}
while (hi >= 0 && hs[hi].empty()) --hi;
}
return -ex[S];
}
// begin min cost flow
bool look_ahead(int u) {
if (ex[u]) return false;
cost_t newHeight = h[u] - N * eps;
for (auto const&e : G[u]) {
if (e.f == 0) continue;
if (h[u] + e.c - h[e.to] < 0) return false; // outgoing admissible arc
else newHeight = max(newHeight, h[e.to] - e.c); // try to make arc admissible
}
h[u] = newHeight - eps;
return true;
}
void push(Edge &e, flow_t amt) {
if (e.f < amt) amt = e.f;
e.f -= amt; ex[e.to] += amt;
G[e.to][e.rev].f += amt; ex[G[e.to][e.rev].to] -= amt;
}
void relabel(int vertex) {
cost_t newHeight = -INFCOST;
for (unsigned int i = 0; i < G[vertex].size(); ++i) {
Edge const&e = G[vertex][i];
if (e.f && newHeight < h[e.to] - e.c) {
newHeight = h[e.to] - e.c;
cur[vertex] = i;
}
}
h[vertex] = newHeight - eps;
}
static constexpr int scale = 2;
template<bool use_look_ahead = true>
pair<flow_t, cost_t> minCostMaxFlow() {
cost_t retCost = 0;
for (int i = 0; i < N; ++i)
for (Edge &e : G[i])
retCost += e.c * (e.f);
// remove this for circulation
flow_t retFlow = max_flow();
h.assign(N, 0); ex.assign(N, 0);
isq.assign(N, 0); cur.assign(N, 0);
stack<int> q;
for (; eps; eps >>= scale) {
fill(cur.begin(), cur.end(), 0);
for (int i = 0; i < N; ++i)
for (auto &e : G[i])
if (h[i] + e.c - h[e.to] < 0 && e.f)
push(e, e.f);
for (int i = 0; i < N; ++i) {
if (ex[i] > 0) {
q.push(i);
isq[i] = 1;
}
}
while (!q.empty()) {
int u = q.top(); q.pop();
isq[u] = 0;
while (ex[u] > 0) {
if (cur[u] == G[u].size())
relabel(u);
for (unsigned int &i = cur[u], max_i = G[u].size(); i < max_i; ++i) {
Edge &e = G[u][i];
if (e.f == 0) continue;
if (h[u] + e.c - h[e.to] < 0) {
if (use_look_ahead && look_ahead(e.to)) {
--i;
continue;
}
push(e, ex[u]);
if (isq[e.to] == 0) {
q.push(e.to);
isq[e.to] = 1;
}
if (ex[u] == 0) break;
}
}
}
}
if (eps > 1 && eps >> scale == 0) {
eps = 1 << scale;
}
}
for (int i = 0; i < N; ++i) {
for (Edge &e : G[i]) {
retCost -= e.c * (e.f);
}
}
return make_pair(retFlow, retCost / 2 / N);
}
flow_t getFlow(Edge const &e) {
return G[e.to][e.rev].f;
}
};
signed main() {
#ifndef UncleGrandpa
ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);
#endif
freopen("fmcm.in", "r", stdin);
freopen("fmcm.out", "w", stdout);
int n, m, S, T;
cin >> n >> m >> S >> T;
mcSFlow<int, int> flow(n + 5, S, T);
while (m--) {
int u, v, cap, cost;
cin >> u >> v >> cap >> cost;
flow.add_edge(u, v, cost, cap);
}
cout << flow.minCostMaxFlow().se << endl;
}